
The Tista and Pycast systems:

Streaming with open standards

Audun Vaaler
Østfold University College
School of Computer Science

Halden, May 2005

Abstract

This document describes the Tista on-demand streaming server and archiv-
ing system, and the Pycast real-time streaming encoding application, both of
which have been developed at Østfold University College, Norway. It also in-
cludes a brief history of streaming, as well as an overview of significant media
codecs, formats, transports and streaming protocols.

Tista is an HTTP-based server for streaming MP3 audio on demand. It dif-
fers from similar applications by supporting archiving of continuous audio
streams (typically radio); by allowing extraction of clips in an easy manner
(start and stop times are specified in the URI); and by scaling to a relatively
large number of simultaneous listeners (700 or more, limited by hardware).
Tista has been used successfully in a production environment at the Norwe-
gian Broadcasting Corporation (NRK).

Pycast integrates various components (e.g. Lame, OggEnc, SoX and Ice-
cast) for encoding and streaming real-time MP3 and Ogg Vorbis streams, and
simplifies the administration of multi-channel, multi-bitrate and multi-format
streaming systems. It lends itself well to automatic parallelisation using open-
Mosix. Pycast has been used extensively in streaming projects at Østfold Uni-
versity College.

Both Tista and Pycast are implemented in the Python programming lan-
guage and run on Linux servers.

Preface

About this document

This paper constitutes the author’s candidatus scientiarum thesis, presented at
Østfold University College, School of Computer Science.

Acknowledgments

I would first of all like to thank Professor Børre Ludvigsen for his guidance,
support, creativity, wisdom, and never-ending supply of interesting projects,
gadgets and interesting ideas.

I am also very grateful to Gunnar Misund who has provided essential feed-
back on this thesis, while displaying admirable patience. May your maps be-
come infinitely detailed!

My work on Tista, Pycast and streaming in general would have been im-
possible without the efforts of my colleagues, both current and past. The list
includes such distinguished hackers as Andreas Bergstrøm (no Linux distro is
complete without the smell of garlic); Nils-Odd Solberg (democracy will never
be the same again); Marte L. Horne; Håvard Rast Blok; and Thomas F. Malt
(congratulations on the successful fork!). Our local administrative staff, in par-
ticular Inger-Lise B. Andersen, deserve praise for their extraordinary helpful-
ness, and for always keeping things running smoothly.

I would also like to thank high-flying philosopher Torkel M. Jodalen for his
friendship, and his participation in innumerable expeditions both large and
small. Life both analogue and digital would have been considerably less in-
teresting without the spontaneous, creative outbursts of Halvor Kise Jr., or the
experiments of Christian Raspotnig, both culinary, ad lib, ad hoc and otherwise.
Siv Hilde Houmb achieved the remarkable feat of leading the way for the rest
of us, in remarkably little time, while continuously smiling, running, skiing,
swimming and realising that someone else had eaten her candy. Tomas Olaj,
breeder of highly symmetrical dogs, should be commended for his works in
the ranks of Tux, and for the century’s cheesiest CS thesis.

Last, but not least, I would like to thank my family for their support, and
for letting me pursue all I found interesting.

3

Original programming

The version of Tista presented in this paper (the source code of which is re-
ferred to in Appendix B) was implemented in its entirety by the author, with a
few exceptions which are cleary marked in the source code.

Pycast has been in constant development, and includes contributions by
Andreas Bergstrøm. However, the fundamental structure of the application,
the original idea and the majority of the code are the work of Audun Vaaler.

Structure

This document contains six chapters. Here is an overview of their contents.

Introduction

Chapter 1 gives a brief introduction to streaming technology and terminology,
and also describes Pycast’s and Tista’s roles in a streaming system.

The history of Internet streaming

Chapter 2 summarises the history of streaming on the Internet, beginning with
Douglas Engelbart’s NLS demo in 1968, and early experiments with audio con-
ferencing on the ARPANET.

It also outlines the development of IP multicast, the MBone and CU-SeeMe,
and the emerging market for IP streaming in the mid-1990s. The chapter ends
with a look at streaming’s recent history, and explains the roles of Tista and
Pycast.

Streaming formats and protocols

Chapter 3 describes some of the most common technologies used for Internet
streaming and delivery of video and audio material, and serves as an introduc-
tion to the terminology of chapters 2, 3 and 4.

It begins with a brief history of the MPEG group and the standards it has
produced (primarily MPEG-1, MPEG-2, MPEG-4 and MP3). Thereafter follows
a summary of standards associated with the Xiph.org Foundation, focusing on
Vorbis and Ogg. The review of coding standards is concluded with a discus-
sion of various proprietary technologies.

The second part of the chapter discusses common streaming protocols, in-
cluding HTTP, RTP, RTSP, SAP and SDP, and mentions some proprietary ones.

The Pycast encoding system

Chapter 4 describes the Pycast encoding system. First, the motivation for cre-
ating the application is explained. Then the programme itself is outlined, in-
cluding its purpose, overall structure and main components.

Pycast’s various modules play an important role, and representative selec-
tion are presented.

The chapter concludes with a look at Pycast’s suitability for automatic pro-
cess migration using openMosix, as well as performance issues and potential
for further development.

The Tista streaming server

Chapter 5 describes the Tista streaming server, and begins with a summary of
the projects that preceded it and the experience gained.

Section 5.2 discusses the motivation for creating Tista itself, the require-
ments that were set, the design choices that were made, as well as details of the
implementation.

The chapter ends with a look on the results achieved (including some of
Tista’s unique aspects), and suggestions for further development.

Conclusion

Chapter 6 concludes by suggesting directions for further development of Py-
cast and Tista, and also makes some observations on the state of Internet stream-
ing and reflects on its future.

Contents

Preface 3

1 Introduction 13
1.1 About streaming . 13
1.2 Acquiring data . 13
1.3 Encoding and transcoding . 14
1.4 Streaming . 14
1.5 Reception and playback . 14
1.6 Pycast and Tista . 15

2 The history of Internet streaming 16
2.1 NLS . 16
2.2 Early ARPANET experiments: NVP, NVP-II and PVP 16
2.3 IP multicast and the MBone . 18

2.3.1 The birth of IP multicast 18
2.3.2 The MBone . 18
2.3.3 Problems . 19
2.3.4 Source-specific multicast 19

2.4 CU-SeeMe . 20
2.4.1 History . 20
2.4.2 Reflectors . 20
2.4.3 The CU-SeeMe community 20
2.4.4 CU-SeeMe today . 21

2.5 RealAudio . 21
2.6 Shoutcast and Icecast . 21

2.6.1 The MP3 phenomenon . 21
2.6.2 MP3 streaming . 22
2.6.3 Webcasting today . 23

2.7 IPv6 . 23
2.8 Recent history . 23
2.9 Other technologies . 24
2.10 Where Tista and Pycast fit in . 24

3 Streaming formats and protocols 25
3.1 MPEG standards . 25

3.1.1 Background . 25
3.1.2 MPEG-1 . 25
3.1.3 MPEG-2 . 26

7

3.1.4 MPEG-4 . 27
3.1.5 MPEG-3, MPEG-7 and MPEG-21 27

3.2 Xiph.org standards . 28
3.2.1 Background . 28
3.2.2 Vorbis . 28
3.2.3 Ogg . 29

3.3 Other standards . 29
3.4 Streaming protocols . 29

3.4.1 A note on multicast . 29
3.4.2 HTTP . 30
3.4.3 RTP . 32
3.4.4 RTSP . 34
3.4.5 SAP and SDP . 37
3.4.6 Proprietary protocols . 37

4 The Pycast encoding system 38
4.1 History . 38

4.1.1 Problems . 39
4.2 Pycast . 39

4.2.1 Physical structure . 39
4.2.2 Overview . 40
4.2.3 Design method . 41
4.2.4 Modules . 41
4.2.5 Parallel processing . 43
4.2.6 Performance . 44
4.2.7 Further development . 45

4.3 Statistics . 45

5 The Tista streaming server 47
5.1 History . 47

5.1.1 Radio on demand, version 1 47
5.1.2 Radio on demand, version 2 48
5.1.3 Lessons learned . 49

5.2 The Tista streaming server . 50
5.2.1 Requirements . 50
5.2.2 Design method . 50
5.2.3 Design choices . 51
5.2.4 Physical structure . 52
5.2.5 Recording . 53
5.2.6 Reassembly . 54
5.2.7 The streaming server . 54
5.2.8 CGI and mod python scripts 57
5.2.9 cron scripts . 59
5.2.10 Common library . 59
5.2.11 Times and dates . 59
5.2.12 Error tolerance . 59

5.3 Results . 60
5.3.1 Universal addressability 60
5.3.2 Scalability . 60
5.3.3 Automatic performance testing 60

5.3.4 Problems . 61
5.4 Further development . 61

5.4.1 Real-time streaming . 61
5.4.2 Robustness . 62
5.4.3 Other formats . 62
5.4.4 Other protocols . 62
5.4.5 User interface . 63
5.4.6 Scalability . 63

5.5 Resources . 64

6 Conclusion 65
6.1 Further plans for Pycast . 65
6.2 Further plans for Tista . 65
6.3 The future of multimedia on the Internet 66

6.3.1 Observations . 66
6.3.2 Downloading vs. streaming 67

6.4 Final remarks . 68

A Abbreviations 69

B Source code 73
B.1 Obtaining the source code . 73
B.2 Newer versions . 73

C Structure of Tista’s metadata database 74
C.1 About the database . 74
C.2 The database structure . 75

D Sample Tista configuration file 76

E Sample Tista search result 79

F Sample Tista log file 80
F.1 About the log format . 80

F.1.1 Structure . 80
F.1.2 Event classes . 80

F.2 Example . 81

G Images of HiØ’s current streaming system 83

Bibliography 92

List of Figures

1.1 Components of a Pycast/Icecast/Tista streaming system 13

2.1 A streaming timeline . 17
2.2 Unicast vs. multicast delivery . 17
2.3 The Open Systems Interconnection Reference Model (OSI) . . . 18
2.4 CU-SeeMe feeds from the Space Shuttle 20
2.5 SHOUTcast/Icecast reflectors . 22

3.1 Typical header returned by an Apache web server 30
3.2 Typical header returned by an Icecast server 30
3.3 RTP packet structure . 32
3.4 Example of an RTSP DESCRIBE request 35

4.1 Sketch of original FIFO-based encoding system 38
4.2 Physical structure of HiØ’s real-time radio streaming system . 40
4.3 Typical Pycast structure . 41
4.4 UML diagram of representative classes 42
4.5 Typical configuration file . 43
4.6 Monthly listener maxima . 46
4.7 Concurrent listeners, first week of May 2005 46

5.1 The original radio on demand system 48
5.2 Physical structure of NRK’s radio-on-demand system 52
5.3 Directory structure . 53
5.4 Reassembling a programme . 54
5.5 Download sequence . 56
5.6 Example of metadata displayed during playback 56
5.7 Programme search sequence . 57
5.8 M3U generation sequence. The web server sends the M3U file

to an appropriate media player. 58
5.9 Typical Tista URI . 60

G.1 Front page . 83
G.2 Radio streaming . 84
G.3 Technical details . 84
G.4 Information in English . 85
G.5 News and service announcements 85
G.6 School of Computer Science building 86
G.7 Satellite antennas . 86

10

G.8 Eight-way antenna head . 87
G.9 DAB antenna . 87
G.10 Server room . 88
G.11 Primary Pycast encoder . 88
G.12 DVB interface, primary encoder 89
G.13 Secondary Pycast encoders . 89
G.14 NRK P1 encoder . 90
G.15 Sound card, NRK P1 encoder . 90
G.16 DAB tuner . 91
G.17 Rear of DAB tuner . 91

Chapter 1

Introduction

This chapter is a brief and relatively informal introduction to streaming tech-
nology and terminology. It also describes Pycast’s and Tista’s roles in a stream-
ing system.

1.1 About streaming

Streaming is the transportation of a collection of data over a network in such a
way that it can be used by the receiver (or receivers) before the entire transfer
has finished.

For instance, with streaming video it is possible to watch an event in real-
time (as it happens), to start watching a recording (a video file) before all of
it has finished downloading, or to talk face-to-face with people all over the
world.

1.2 Acquiring data

Any streaming system needs one or more data sources from which to obtain
data. A real-time streaming system, such as the combination of Pycast and
Icecast [1], will use a live feed, for instance a radio receiver. (A purely Internet-
based stream would be directly connected to some kind of production system.)

� � � � � � � � � � �	
 � � � � � � � � � � 	
 � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � �

� � � � � � � � �
� � � � � � � �

	 � �
 � � � �� � � � � � � � �

 � !

� � � " � � � �

� $ � ! � �
� % � � &

' (� � & $ % �
� % � � &

) � * ! � (� �

Figure 1.1: Components of a Pycast/Icecast/Tista streaming system

13

If a data source is analogue (for instance an FM radio) it must first be sam-
pled to convert it to digital form. Audio from digital sources has been subjected
to sampling already, but often need to be transcoded from one digital format to
another.

1.3 Encoding and transcoding

Before being distributed onto the network a stream must be encoded into a spe-
cific format, so that it is easily understandable for media players1. Encoding
usually also involves compression of the data to conserve bandwidth.

The most common audio compression algorithms (such as MPEG-1 Layer 3
2) are lossy, and achieve high compression ratios by discarding nuances that are
not easily perceptible to human brains, ears and eyes. Algorithms that preserve
all of the information inherent in the data (for instance FLAC3) are non-lossy.

Transcoding is the conversion of data between different formats and/or qual-
ity levels. For instance, Pycast is often used to transcode high-bitrate MPEG-1
Layer 2 (MP2) streams to lower-bitrate MP3 streams. The number of trans-
coding steps between lossy formats should generally be kept low, to avoid
unnecessary loss of quality. Transcoding is usually achieved by first decod-
ing the source data to an uncompressed intermediary format, which is then
re-encoded into the target format.

1.4 Streaming

After encoding, the data is ready for distribution to listeners or viewers, pos-
sibly after being stored a while for on-demand playback. Streaming is often
performed by a dedicated streaming server (e.g. Icecast), but is sometimes also
done by the encoding system itself. (For instance, Pycast can transmit streams
via IP multicast (see section 2.3 without the aid of a separate streaming server.)

1.5 Reception and playback

On a user’s computer, streams are usually played back with a stand-alone me-
dia player (such as VLC [2], QuickTime Player [3] or Windows Media Player
[4]), or embedded inside a Web page in a browser.

The term streaming implies that a stream is played back while it is being
received. It is also common to download a stream in its entirety before playing
it.

1Please note that the term media player is used in the widest sense to refer to any application
capable of playing and presenting video and audio, and not a specific product, such as Microsoft’s
Windows Media Player.

2See section 3.1.2.
3See section 3.2.1.

14

1.6 Pycast and Tista

Pycast and Tista can be combined with Icecast to make a complete real-time
and on-demand radio streaming system (figure 1.1). In that case Pycast will
be used to acquire (from digital or analogue sources) and encode/transcode
audio streams. It is also capable of transmitting streams via IP multicast.

The version of Tista described in this paper is not capable of streaming MP3
data in real-time. It is therefore necessary to enlist the help of an Icecast server
to distribute the streams to listeners.

Tista also uses the Icecast server as a source for continuously downloading
and storing streams, which are instantly made available for on-demand listen-
ing or downloading.

15

Chapter 2

The history of Internet
streaming

This chapter gives an overview of the history of streaming (and other forms of
media delivery) on the Internet (figure 2.1), and relates this to the development
of Tista and Pycast.

2.1 NLS

It is difficult to summarise any area of personal computing without mentioning
the work of Douglas Engelbart; this applies to streaming as well.

Engelbart’s demonstration of the online system (NLS) [5, 6] at the 1968 Fall
Joint Computer Conference in San Francisco introduced such concepts as the
mouse, graphical user interfaces (GUIs), hypertext, and the idea of PCs itself.

The demonstration also used live video feeds communication with remote
users1. While this can not be considered streaming (he feeds were carried with
analogue signals over a circuit-switched network), it foreshadowed what was
to come.

2.2 Early ARPANET experiments: NVP, NVP-II and

PVP

The first experiments with streaming audio in packet-switched networks took
place on the ARPANET (the precursor of today’s Internet) in the early 1970s.

One important result was the Network Voice Protocol (NVP) [7], which was
first implemented in December 1973. NVP was part of ARPA’s Network Secure
Communications (NSC) project, which sought to “develop and demonstrate
the feasibility of secure, high-quality, low-bandwidth, real-time, full-duplex
(two-way) digital voice communications over packet-switched computer com-
munications networks”.

1Analogue video feeds also delivered the GUI, since the NLS computer itself was situated at
the Stanford Research Institute, a distance away.

16

+ , - .

/ 0 1 2 3 4 5 6 7 8 9: ; < = 2 > ?

@ A 6 9 7 B 2 6 9 A ? 0? C : 2 7 D ? 6 EF ? A G 2 H 6 ? 7 I

+ , - J + , K . + , K J + , , . + , , J L . . . L . . J

: F H MN @ O P Q R H 5 G E 2 7 F A = 2 ?H 6 ? 7 ? G ? 3

S ? 9 7 / T 7 2 0 9 A ? 0 9C ? 6 U H V W 3 7 A G 5 9 7 A 0 1
X Y 2 Z ? 6 3 = [Z A = 2 Z 2 4

\ W = A ? 5 0 = B A = 2 ?C 2 2 = 9 C 6 ? > U / X @> 2 2 7 A 0 1 9
N X H B R

V ? 9 5 A G D 2 44 6 ? D 9 2 6
Z A 0 7 2 6] 3 ^ > _ A G 94 6 ? 5 = G 5 9 7 D A 7 YO ` [< 2 2 V 2

U H B a
N 2 5 3 [\ W = A ?

N X HB b

N 2 5 3 [F A = 2 ?

< S] ` X [G 5 9 7
U G 2 G 5 9 7

c A 7 [X ? 6 6 2 0 7

< < V> W 3 7 A G 5 9 7

V ? 4 A 3 2 _ Y ? 0 2B A = 2 ? 9 7 6 2 5 > A 0 1d : N e f

Figure 2.1: A streaming timeline

g h i j k l m n o p m i j k l m

Figure 2.2: Unicast (left) vs. multicast (right) delivery. By intelligently distributing
one-to-many or many-to-many data in the network, multicast can significantly reduce
load.

Digital, packet-switched audio communication was (quite rightfully) as-
sumed to be potentially very useful for the military: Such a system could be
deployed world-wide, be more robust than circuit-switched telephones, and
audio streams could easily be secured using encryption.

NVP was formally defined in RFC 741 [7] in 1976, and was followed by
NVP-II [8] and the Packet Video Protocol [9] in 1981.

In the early 1990s NVP was adapted for use in multicast experiments [10],
and strongly influenced the design of RTP (see section 3.4.3).

17

q r s t u v w x y z
{ r | w } ~
� r � � � � � � ~
� r � � y } v � � � �
� � � � � � � � �
� � � � � � � � � � � � � �
� r � � � z w x y � w � }

Figure 2.3: The Open Systems Interconnection Reference Model (OSI). Layers in
boldface map directly to layers in the TCP/IP stack.

2.3 IP multicast and the MBone

2.3.1 The birth of IP multicast

Interest in streaming and other media delivery over the Internet seems to have
been quite low during the 1980s, probably due to limited bandwidth and lack
of multimedia support in hardware and software.

This started to change around 1990, initially fueled by the advent of IP mul-
ticasting [11], pioneered by Stephen Deering. Data which need to be trans-
mitted to multiple receivers (by one or more senders) can be more efficiently
transported if it never travels along a specific network link more than once
(figure 2.2). Schemes that accomplish this are generally referred to as multicast
protocols.

IP multicast works on layer three of the OSI model (figure 2.3); any multicast-
enabled router will therefore be able to route IP multicast traffic. Users join a
multicast group by listening to a specific multicast IP address.

In the late 1980s and early 1990s, when bandwidths were far lower than to-
day, IP multicast made it possible to conduct audio and video conferences and
broadcasts that scaled beyond just a few participants. This led to an exploding
interest in multimedia communication on the Internet.

2.3.2 The MBone

Since few routers at the time supported multicast, a virtual network based on
tunnels and multicast-native routers was established. The network was later
named the MBone (multicast backbone) [12].

In March 1992 the MBone was used to distribute real-time audio from the
23rd Internet Engineering Task Force (IETF) meeting in San Diego, USA to 20
sites world-wide. This was the first large-scale audio multicast over a packet-
switched network.

As the number of MBone users rapidly grew, the amount of material avail-
able there increased as well. Streams included meetings and conferences (natu-
rally), TV channels (e.g. NASA TV [13]), radio stations, lectures, and (of course)

18

the obligatory webcams overlooking a parking lot2.

While interest relative to other technologies has waned somewhat, the MBone
is still an interesting place, with lots of high-quality feeds. A visit is recom-
mended to anyone with an Internet connection sophisticated enough to sup-
port it.

2.3.3 Problems

For almost half a decade multicast streaming remained a popular and promis-
ing area, and was assumed to soon move into mainstream use, together with
other Internet technologies such as the World-Wide Web. Unfortunately, un-
foreseen difficulties have slowed down the proliferation of multicast signifi-
cantly. [14] mentions several reasons, including these:

• Lack of protection against attacks by unauthorised senders.

• High implementation complexity.

• Problematic address allocation, including relatively high risks of address
collisions.

• Poor scalability when routing multicast data between organisations.

2.3.4 Source-specific multicast

An encouraging and relatively recent development is source-specific multicast
(SSM) [15], which in contrast to the original multicast approach (referred to
as any-source multicast, or ASM) only allows only one sender in a multicast
group: Instead of being defined only by its IP address, an SSM group is defined
by the combination of its IP address and the IP address of the sender.

SSM is therefore ideal for one-to-many streaming (e.g. TV or radio), and
many of the problems associated with ASM no longer apply:

• Since groups have only one sender, there can longer be such a thing
as unauthorised transmitters. (Group members explicitly limit which
sender they will receive data from.)

• Address allocation becomes trivial, since different senders may use the
same target IP addresses without interfering with each other.

• According to [14] complexity and routing difficulties are significantly re-
duced.

IP multicast, especially SSM, is probably due for a comeback in the near
future, since it is potentially very valuable for truly large-scale distribution of
real-time data. (Ideally, the Internet should be able to e.g. handle real-time
streaming of high-quality, real-time video to millions of viewers.)

2It seems that one of the first applications of any new video streaming technology is to use it to
broadcast the view of a parking lot, or any other view available in the nearest window

19

Figure 2.4: CU-SeeMe feeds from the Space Shuttle. (Screenshots by Halvor Kise Jr.)

2.4 CU-SeeMe

2.4.1 History

In the beginning the MBone tools were only available for UNIX platforms,
making it impossible for users of Macs and PCs (which at the time had rel-
atively unsophisticated networking support) to participate. Timothy Dorcey
and Richard Cogger of Cornell University, consequently set forth to program
an inexpensive videoconferencing tool that should be usable on computers that
were then widely available.

Their theory, which turned out to be correct beyond their expectations, was
that an accessible, low-cost solution would be widely and quickly adopted.

The result, CU-SeeMe [16], first appeared in the autumn of 1992, initially
only for the Macintosh [17, chapter 8] and without audio. Video was monochro-
matic (16 shades of grey, 160x120 pixels) and compressed using a custom algo-
rithm optimised for use on Motorola 68020 and 68030 processors. More ad-
vanced versions, complete with audio support, followed, including ports to
Microsoft Windows.

2.4.2 Reflectors

Since CU-SeeMe could not rely on IP multicast for efficient stream delivery, its
authors decided to ensure scalability by distributing data via reflectors, servers
that could work as distribution hubs for multi-party conferences or broadcasts.

CU-SeeMe’s reflector system may in other words be seen as an application-
level multicasting scheme (OSI layer 7).

2.4.3 The CU-SeeMe community

CU-SeeMe very soon gained a large following of enthusiastic users, inspired by
the software’s ease of use, and the experience of communicating face-to-face
with people all over the world. In addition to ad-hoc chats and conferences
with friends, colleagues or even complete strangers, CU-SeeMe was also used
to broadcast events such as space shuttle flights (figure 2.4), conferences, Nobel
Prize ceremonies [17, page 23], and the 1994 Olympic Winter Games [18].

Børre Ludvigsen and Halvor Kise Jr. at Østfold University College played
active roles, and were responsible for operating three high-traffic reflectors,

20

performing the Nobel and Winter Games broadcasts, and broadcasting Ra-
dionettet, the world’s first regular radio programme available online, in co-
operation with the Norwegian Broadcasting Corporation (NRK). Mr. Lud-
vigsen even took his entire home online [19].

2.4.4 CU-SeeMe today

CU-SeeMe use has been declining for the better part of a decade, and the sys-
tem is currently mostly of historical interest. Its spirit flourishes, though, in the
form of media streaming, instant messaging (IM) clients with video conferenc-
ing support, as well as a plethora of webcams keeping eyes of everything from
parking lots to goldfish.

Timothy Dorcey continues to work with video conferencing technology as
part of iVisit [20].

2.5 RealAudio

Internet streaming took its first real steps into the mainstream in the mid-1990s,
when there was a surge of interest in streaming solutions that could be eas-
ily integrated with the Web. As always in an emergent market several con-
tenders appeared, including Progressive Networks, VDOnet (makers of VDO-
Live), Xing (makers of StreamWorks), Liquid Audio, and AudioActive [21].
Few of the companies have survived; the rest have either been merged into
other companies, changed their business focus, or gone bankrupt. Progressive
Networks did better.

In April 1995 [22] Progressive launched RealAudio, a codec and streaming
server solution for audio that became very popular very quickly. The reasons
for RealAudio’s success are not immediately clear a decade later; two likely
explanations are that it was among the first to offer actual streaming (playback
during download), and that it had advanced features such as user-friendly
seeking. (Competing products seem to have had surprisingly Spartan user
interfaces.)

In 1997 Progressive was renamed RealNetworks, and introduced the Re-
alVideo codec as part of RealPlayer 4.0. Real today remains one of the three
major commercial streaming suites, together with Microsoft’s Windows Media
and Apple’s QuickTime.

Windows Media and QuickTime did not support streaming until the spring
of 1999, when version 4 of both products was released [23, 24].

2.6 Shoutcast and Icecast

2.6.1 The MP3 phenomenon

Towards the end of the 1990s MPEG Layer 3 audio (MP3, see section 3.1.2)
began to emerge as a grass-roots alternative for storing and sharing music.
First of all it was capable of efficiently compressing audio files with only a
minimal loss of quality. Secondly, the number of computers capable of MP3

21

� � � � � �

� � � � � ¡ ¢ �
£ ¤ ¥ ¡ � � � �

£ ¦ § ¦ ¨ ©

ª « ¬ ¢ ® ® ¢ � ¥ ¯ ° ¤ ± ¤ ® � � ¤ « ¯ ¢ � ²

Figure 2.5: SHOUTcast/Icecast reflectors. The large black dot is a sender; the smaller
black dots are listeners; the large white circles are reflectors. (This is an illustration
only, and does not show an actual reflector constellation.)

playback had reached a critical threshold. Also, the format was open, with a
wide selection of players, encoders and other tools that supported it.

The MPEG standards had been designed with streaming in mind, and MP3
consequently lends itself well to being streamed; indeed creating a stream was
as simple as placing an MP3 file on a web server and listening to it with a player
that supported progressive downloading3 of media (for instance WinAmp [25]).

2.6.2 MP3 streaming

Two groups took advantage of this: Nullsoft (the creators of WinAmp) launched
SHOUTcast [26] in December 1998 [27]; Icecast [1], a free software project, ap-
peared shortly thereafter.

The two applications were quite similar: Both streamed real-time MP3 au-
dio over HTTP, and could be used with most MP3-compatible media players.

Also, both supported the concept of reflectors (yet another instance of app-
lication-level multicast) for scalability: A sender would typically send his or
her stream to a remote SHOUTcast or Icecast server, which distributed it ei-
ther directly to listeners, or via one or more other servers acting as a reflectors
(figure 2.5). This freed would-be broadcasters from having to run their own
streaming servers, and allowed even home users with very limited upstream
bandwidth to share their own radio programmes with the world.

3Progressive download occurs when a media player is able to start playback while a file is being
downloaded.

22

Another important advantage was that MP3 and HTTP offered better audio
quality and supposedly fewer connection problems [28] than the competition,
which at the time mostly consisted of RealAudio. (To be fair, MP3 was probably
streamed at higher bitrates, and the TCP-based HTTP brings with it higher
traffic overheads than e.g. UDP-based streaming.)

2.6.3 Webcasting today

HTTP-based web radio (usually operated with SHOUTcast or Icecast servers)
has remained very popular. Webcasters include large radio stations like Virgin
Radio in the United Kingdom [29], and the Norwegian Broadcasting Corpora-
tion, in co-operation with Østfold University College [30].

2.7 IPv6

The Internet Protocol, version 6 (IPv6) [31] was first published in 1995 and im-
proves the currently widespread IPv4 in many ways that are useful for stream-
ing and media delivery.

Most importantly, it vastly expands the IP address space (by a factor of 2
96),

making it possible to connect a virtually limitless number of devices of all kinds
to the Internet. This will hopefully reduce the temptation of using network
address translation [32], strengthen end-to-end connectivity, and make peer-
to-peer distribution of data more practical and efficient.

Secondly, IPv6 includes native support for multicasting, including SSM.
IPv6-enabled network should therefore be able to transport realt-time data
much more efficiently than today.

Finally, IPv6 also supports prioritisation of packets, making timely delivery
of time-critical data easier.

2.8 Recent history

Streaming on the Internet can trace is history back more than 30 years, but has
not been part of the computing mainstream for more than five to ten. Between
1995 and 2000 it bore the hallmarks of an emerging industry, with a large num-
ber of start-up companies competing for domination.

During the last five years it has been dominated by consolidation (devour-
ing most of the early start-ups) and maturation. The dominant streaming plat-
form today is Microsoft’s Windows Media, in line with developments else-
where in the IT industry. More people create, listen to and watch streams than
ever, but the pace of innovation has inevitably slowed down.

On the other hand many interesting things have happened, especially on
the grass-root level. For instance, the BitTorrent peer-to-peer (P2P) system
[33, 34] has made it possible for persons and small companies to distribute
large files (of megabyte or gigabyte size) to hundreds or thousands of users.
(Data transfer at such scales have traditionally required more bandwidth that
individual users could not afford.)

23

Interesting tendencies to watch in the future include P2P publishing sys-
tems; delivery of media to mobile computers (including cell phones 4 and MP3
players); open standards versus increasing demands for control (including dig-
ital rights management); and the possible revenge of IP multicasting.

2.9 Other technologies

Several important technologies (e.g. MPEG) have received little or no attention
in this chapter, but will be covered in more detail in chapter 3.

2.10 Where Tista and Pycast fit in

Both Tista and Pycast were created to solve problems for which suitable tools
did not exist.

An archiving and on-demand streaming system like Tista could for instance
have been implemented by combining a scheduled recording programme with
a regular web server. However, such a solution brings with it flexibility and
scalability problems (see section 5.1.3.

Tista does nothing new in the areas of streaming protocols or formats, but
has innovative features for continuous stream archiving and user-friendly and
very flexible extraction of clips. It also scales to a larger number of concurrent
users than most web servers do (see section 5.2).

The de facto standard for encoding Icecast streams is Ices [36]. Pycast, how-
ever, offers a few potentially very useful extra features: Most importantly, it can
use DVB streams for audio input (reducing the need for radio tuners), and can
easily handle a large number of streams (encoders run as separate processes).
See section 4.2 for more information.

4NRK started streaming TV to mobile phones in 2004[35]

24

Chapter 3

Streaming formats and
protocols

Media coding standards and transport protocols are essential for streaming.
This chapter describes some of the most common technologies, including MPEG,
Ogg, HTTP, RTP and RTSP.

3.1 MPEG standards1

All of our streaming activities involve MPEG standards, either at the source
(e.g. when transcoding from a digital video broadcasting (DVB) or digital au-
dio broadcasting (DAB) stream), when streaming to clients (e.g. MPEG-1 Au-
dio Layer 3 (MP3) radio streams) or both. This section outlines the history of
the MPEG standards with an emphasis on the specific technologies we use.

3.1.1 Background

The Motion Pictures Expert Group (MPEG) was formed in 1988 to standardise
rapidly evolving video encoding technology. Video naturally played an impor-
tant role in the emerging multimedia industry. Computer companies as well
as the home electronics and entertainment industries mainly concentrated on
off-line digital storage based on CD-ROM; telecom and broadcast companies
needed video coding solutions for teleconferencing and digital TV distribution.

The MPEG group has since released three comprehensive standards for
audio/video coding and encapsulation: MPEG-1 (1992), MPEG-2 (1994) and
MPEG-4 (1998).

3.1.2 MPEG-1

MPEG’s initial focus was CD-ROM-based applications, with a target bitrate of
1.5 Mbits/s (slightly above the 150 kbyte/s transfer rate of a 1x CD drive2).

1This section is based on [37, 38, 39].
2The speed of a CD drive is usually indicated using multiples of the 150 kbyte/s base rate, e.g.

2x (300 kbyte/s) or 10x (1500 kbyte/s).

25

Since there was no need to encode video in real-time, technology designers
could prioritise quality over encoding speed.

The MPEG-1 standard defines three audio codecs of increasing complexity,
namely MPEG-1 Audio Layer 1, 2 and 3 (usually referred to as MP1, MP2 and
MP3).

Since MPEG-1 was designed to be used in settings with low error rates,
MPEG-1 streams are not very resilient to data loss. Audio and video tracks
(in the form of packetised elementary streams (PES)) are multiplexed into pro-
gramme streams (PS) for storage. The standard also does not support inter-
laced coding of video.

3.1.3 MPEG-2

The MPEG-2 standardisation process began in 1990 with the goal of creating
a generic video compression system suitable transmissions such as TV broad-
casting (satellite, terrestrial and HDTV), radio broadcasting and videoconfer-
encing. MPEG-2 is based on MPEG-1, and MPEG-2 decoders are required to
support playback of MPEG-1 streams with MP1, MP2 or MP3 audio.

In addition to extending MP3 with three new sampling rates, MPEG-2 also
introduced the Advanced Audio Coding (AAC) codec, which significantly more
efficient codec at the cost of backwards compatibility. (According to [38] AAC
yields the same quality as MP3 at around 70% of the bitrate.)

Since MPEG-2 was to be used in a much wider range of settings: In addition
to supporting reliable media like CD-ROM and DVD discs, MPEG-2 streams
were required to work well when streamed across asynchronous transfer mode
(ATM) networks and to support multiplexing of streams with different time
bases3.

MPEG-2 therefore defines two different multiplexing schemes: Programme
streams (PS) provide backwards compatibility with MPEG-1 PS streams. Trans-
port streams (TS) make it possible to multiplex PES streams with different time
bases. Also, the small TS packet size4 of 188 bytes reduces the impact of packet
loss, and facilitates use of forward error correction. The TS format is therefore
well suited for use in noisy or lossy contexts (e.g. satelitte broadcasting).

It should be noted that in some cases (e.g. for RTP streaming, see section
3.4.3) individual PES streams are transmitted using separate channels provided
by the underlying transport protocol (e.g. IP) instead of using PS or TS multi-
plexing.

MPEG-2 also added support for encoding of interlaced video (for TV and
traditional video compatibility), as well as higher bitrates (beyond 10 Mbits/s)
and larger picture sizes.

Some current mainstream uses of MPEG-2 include digital TV broadcasting
(e.g. DVB and HDTV) and video storage on DVDs.

3Related media streams (e.g. the audio and video tracks of a TV channel) use the same time base
so that they can be properly synchronised during playback. Often it is also desirable to multiplex
unrelated streams (e.g. when transmitting several different TV channels via one physical satellite
transponder), in which case it is impractical to use one single time base.

4In this context a packet is a portion of MPEG data, and should not be confused with e.g. an IP
packet. It is, however, likely that an MPEG packet would be mapped onto a corresponding packet
in the underlying transport layer.

26

3.1.4 MPEG-4

Development of what was to become MPEG-4 started in 1992 when an ad-
hoc group was formed to investigate the feasability of a 10 kbit/s audio/video
codec. Formal work started began in 1993.

The initial goal was to identify far-term applications and requirements for
very low-bitrate video coding. It soon became clear that the similar H.263 stan-
dard being developed by the International Telecommunication Union (ITU)
would provide performance close to the technological limits of the day. The
MPEG-4 group assumed that their work on another codec would do little to
improve the state of the art within a self-imposed five-year limit.

Instead of dissolving the group, focus was moved to an analysis of trends
in the audio/video (AV) world, based on the convergence of TV, movies, enter-
tainment, computing and telecommunications. Important goals became sup-
port for new kinds of AV communication, access and manipulation; a more
advanced bitstream (multiplexing) format; improved efficiency (for low-bitrate
communication or low-capacity storage); and video with better subjective qual-
ity than H.263.

In addition to providing AV codecs and an advanced multiplexing sys-
tem MPEG-4, also supports integration of other data types like text, graphic
overlays, synthetic music, spatialised audio, irregularily shaped video frames,
3D virtual worlds and hyperlinks. Because of the standard’s size, creators of
MPEG-4 software are not expected to implement the entire specification, but to
choose useful components as needed.

MPEG-4 provides two file formats: XMT (extensible MPEG-4 textual for-
mat) stores data using relatively abstract, high-level, XML-based structures,
which makes XMT files suitable for further processing in e.g. a video editing
programme. In contrast, the MP4 format is more rigid, and leaves less control
to users (since the streams are not supposed to be edited or changed). MP4 files
are used for distribution of finished MPEG-4 content.

Additionally, MPEG-4 specifies two standards for streaming, one based on
RTP for use in IP networks, and one for carrying MPEG-4 data using MPEG-2
transport streams.

Using a selection of video codecs MPEG-4 supports video bitrates from 5
kbit/s to 1 Gbit/s. MPEG-4’s speech coding supports rates from 2 kbit/s to 24
kbit/s (or a lower limit of 1.2 kbit/s using variable bitrate coding). Its general
audio codec (mostly based on MPEG-2 AAC) supports bitrates from 4 kbit/s
and up.

3.1.5 MPEG-3, MPEG-7 and MPEG-21

Three other MPEG standards exist. Since none of them specifies video or audio
compression standards, I will describe them only very briefly here:

• The purpose of MPEG-3 was to develop compression standards for high-
definition TV (HDTV). When it became clear that MPEG-2 codecs were
sufficient, work on MPEG-3 was stopped and MPEG-2 adopted for HDTV
applications.

• MPEG-7 is a standard for describing multimedia content (including pic-
tures, video, speech, real and synthetic audio as well as 3D models), in a

27

way that is independent of formats and storage media (including paper,
film and tape).

• The goal MPEG-21 is to investigate the different parts of the multimedia
production and distribution chain, and to define appropriate standards
for the various processes involved.

MPEG-7 and MPEG-21 are not yet widely used.

3.2 Xiph.org standards

3.2.1 Background5

In 1998 the Fraunhofer Institute announced that it would begin to charge fees
from users of the MP3 codec (including developers of alternative implementa-
tions). Alarmed by this development, free software programmer Christopher
Montgomery began work on an alternative, patent-free codec. He was joined
by other programmers, and version 1.0 of the codec, named Vorbis, was re-
leased in 2002. (Several open-source and independent MP3 encoder implemen-
tations later fell victim to the stricter enforcements of Fraunhofer’s intellectual
property rights.)

Development is now coordinated by the Xiph.org Foundation (formerly
known as Xiphophorus), along with the related (at least in spirit) Theora, Speex,
FLAC, Tarkin and Writ standards.

Vorbis is formally known as Ogg Vorbis6; Ogg is an encapsulation standard
used by many of the formats mentioned above.

3.2.2 Vorbis

As already mentioned Vorbis was developed to fill the same roles as MP3, and
shares many of the same characteristics. Apart from Vorbis’s slightly better
compression rates and some novel technological features (like bitrate peeling7)
the main differences are related to patents and licensing.

The Vorbis standard itself has been placed in the public domain, and is
unencumbered by patents or licensing issues8. The Xiph.org foundation has,
however, reserved the rights to set further Vorbis specifications and to certify
standards compliance.

Libraries developed as part of the project are covered by a BSD-style license;
tools are covered by the GNU General Public License.

Ogg Vorbis is widely supported by many media players, including hardware-
based and portable ones, but still lags behind MP3.

5This section is based on [40, 41].
6The name Ogg is supposedly taken from the Netrek computer game[42]. Vorbis is named after

a character in the novel Small Gods [43], part of Terry Pratchett’s Discworld series [41].
7Ogg Vorbis supports the rather interesting concept of bitrate peeling: An encoded stream may

consist of layers of data at different levels of detail. Instead of encoding several streams at different
bitrates (e.g. to cater for different types of network connections), one stream can be encoded in-
stead and layers later peeled away until the resulting stream has a low enough bitrate. This feature
has not been implemented by any encoding tools yet.

8Some people external to the project claim that Vorbis is not entirely patent-free.

28

3.2.3 Ogg

The Ogg format is used for encapsulation and transport of Vorbis streams and
many of the other formats developed under the Xiph.org umbrella. Version 0
of the standard is documented in RFC 3533 [44], which also specifies an RTP
transport scheme.

An encapsulated stream (a physical bitstream in Ogg terminology) contains
one or more logical bitstreams produced by one or more encoders. Logical bit-
streams are delivered to the Ogg multiplexer in packets (not to be confused with
network packets) and placed in pages equipped with headers. The multiplexer
pays no attention to the actual contents of logical streams.

All logical streams start with a beginning of stream (BOS) page that iden-
tifies the codec in use and usually contains information about the encoded
stream (e.g. sample rate and number of audio channels).

3.3 Other standards

Coding standards are legion; I will mention a few more:

• Windows Media [4] is a multimedia framework developed and used by
Microsoft, and is included in most modern versions of Windows. Due
to the current software market situation it can be found on most PCs.
While it supports some open standards like MP3 and MPEG-1, its more
advanced codecs, as well as the encapsulation format, are proprietary
and closed.

• QuickTime [3] is a multimedia framework developed and used by Apple,
and is included in all current versions of Mac OS. It supports several open
standards (e.g. MPEG-1, -2 and -4, as well as MP3 and AAC), but also
includes many proprietary ones. MPEG-4’s MP4 format is based on the
QuickTime encapsulation system.

• RealNetworks [45] played an important part in developing Internet stream-
ing software in the early 1990s, and now have a large numbers of users
of its RealMedia, RealAudio and RealVideo products. Several of their
codecs and other technology have been open sourced and are currently
developed as part of the Helix project [46].

A very interesting recent development is BBC’s Dirac [47] codec, which
aims at general high-quality, high-efficiency coding of video at resolutions from
180x144 to 1920x1080 pixels, with a minimum of patent liabilities. Dirac is a
part of the BBC’s effort in investigating and developing technologies for large-
scale distribution of media via the Internet, and is developed using an open
source model.

3.4 Streaming protocols

3.4.1 A note on multicast

The term multicast in its most general sense describes any protocol for efficient
delivery of data to multiple network destinations, ideally in such a way that

29

HTTP/1.1 200 OK Date: Fri, 17 Sep 2004 22:48:22 GMT
Server: Apache/1.3.33 (Darwin)
Last-Modified: Fri, 17 Sep 2004 22:46:25 GMT
ETag: "ecada-70434-42151ec1"
Accept-Ranges: bytes Content-Length: 459828
Content-Type: application/ogg

Figure 3.1: Typical header returned by an Apache web server when a file has been
requested. Note that both modification date (Date) and file size (Content-Length)
are included.

HTTP/1.0 200 OK
Content-Type: application/ogg
ice-audio-info: samplerate=48000
ice-name: NRK Alltid Klassisk
ice-public: 1
Server: Icecast 2.0.0

Figure 3.2: Typical header returned by an Icecast HTTP streaming server when re-
questing a stream. (Some of the header lines represent Icecast extensions.)

each copy of a given piece of data travels across a specific link only once.

Please note that the term is used more specifically in this document to sig-
nify IP multicast (either any-source or source-specific).

3.4.2 HTTP

The Hypertext Transfer Protocol (HTTP) [48] is not specialised for streaming,
but still deserves to be counted as one of the most important streaming proto-
cols, mostly because of its ubiquity, familiarity and simplicity.

Since HTTP is quite well-known, I will only cover it quite briefly.

Streaming with HTTP

HTTP was, as its name suggests, designed for transferring hypertext files over
the Internet. When used for streaming it facilitates the transportation either
of files in such a way that they can be played back while downloaded, or of
continuous streams with no definite length (e.g. a radio broadcast). Figures 3.1
and 3.2 show the headers returned by web servers in two typical cases.

Most media players9 support such progressive playback of streams. How-
ever, some media files are organised in ways that make them unsuitable for
HTTP streaming. For instance many MPEG-4 need to be fully downloaded be-
fore playback can start, since essential information is found at the end of the
file.

9Players on current mobile phones seem to represent a notable exception.

30

Advantages

HTTP as a streaming protocol has several important advantages, mostly due
to its familiarity and ubiquity.

• Streams can be treated just like files: Since HTTP is a general data trans-
fer protocol any application or tool that can download a file can also
download streams. This means, among other things, that users and pro-
grammers can reuse existing software and knowledge, thus lowering the
threshold for further innovation.

• Increased transparency: Because HTTP is widespread, well-known and
technically quite simple, using it makes the workings of streaming soft-
ware easier to understand, learn and experiment with.

• Increased predictability: HTTP is one of very few protocols that can tra-
verse the obstacles of today’s Internet with relative ease. Many other
protocols (and sometimes even HTTP) encounter problems for instance
due to firewalls and network address translation (NAT) routers. Also,
because of its essential nature, most networking equipment and software
are specifically designed to work well with HTTP.

• Improved interoperability, due to the wide variety of programmes that
support HTTP.

Disadvantages

While HTTP often works well, it is not perfect for streaming. Designed for
transferring files, not streams, it is both less efficient and has fewer specialised
features than many dedicated streaming protocols.

• HTTP is less efficient than most other streaming protocols, since it is
connection-oriented and based on TCP. With a UDP-based stream lost
packets can be skipped (often with minimal consequences for listeners
or viewers); using a TCP-based stream implies the added overhead of
keeping track of and resending lost data.

• Lack of streaming-specific functionality: HTTP is not designed for media
streaming and does not support useful functions such as random-access
seeking10.

• Poor scalability: HTTP is inherently unicast-only, and scaling to a large
number of simultaneous listeners (especially at high bitrates) is not triv-
ial. One possible workaround is to use a network of relay servers.

• Streams can be treated just like files. This means that it is significantly
easier to obtain a perfect copy of an HTTP stream than e.g. one streamed

10HTTP does, however, support resuming of downloads: Typically, a client that has been inter-
rupted while downloading a file can request it again but indicate that it is interested in retrieving
only a part of the file (given as a range of bytes). This mechanism is used by some media players
(e.g. Winamp [25]) to implement basic stream seeking capabilities, by approximating byte offsets
based on the average bitrate of a stream.

31

³ ´ µ µ ¶ · ¸ ¹ · º » · º ¹ ¼ ½ · ¾
¿ À ¼ · ¶ ¿ Á ¼ Â

¶ Ã º » Ä ¾ Å º À ¶ Á ¿ À Å º ¶ Å ¹ ¾ » · Æ Ç Ç È µ É À Ê · º ¿ À Ë · ¾
» Å º ¿ ¾ À ½ ¹ ¿ À º Ì ¶ Å ¹ ¾ » · Æ µ Ç È µ É À Ê · º ¿ À Ë · ¾ ¶

Â Á Ã Í Å Á Ê ¿ Ã Â ·
Î Ï Ð Ñ Ò Ó Ð

Ô Õ

Ö × Ó ×

Ø Ù
ÚÛ ÙÜ

Ý ÚÞß à Ú
Û

¿ Ã Â · á ¶ Â · » À Ë » Ê Á ¿ Á Ä · Á Ê · ¾ · â ¿ · º ¶ À Å º Í · º Ì ¿ Ä
Ä · Á Ê · ¾ · â ¿ · º ¶ À Å º Ê Á ¿ Á

Figure 3.3: RTP packet structure. The extension header is optional.

using UDP. Tools for capturing HTTP streams are widely available (in-
deed, any web browser will suffice), and the use of TCP guarantees a
perfect copy without missing data.

(On the other hand, any stream published or broadcast in any medium
or using any protocol can be recorded. HTTP just makes the process a bit
easier.)

3.4.3 RTP

The Real-time Transport Protocol (RTP) [49] specifies a standard packet format
for transporting media streams on packet-switched networks. It is commonly
used for distributing video and audio streams on IP networks (in real time or
on demand) and for conferencing. RTP is suitable for both unicast and mul-
ticast distribution, and can run on top of both UDP and TCP. It may be used
with a wide variety of codecs; specifications exist for carriage of both MPEG-1,
MPEG-2, MPEG-4, Ogg and several other streaming formats.

In contrast to HTTP, RTP is only a transport protocol, and has no mecha-
nisms for e.g. request handling or negotation. Such tasks are usually handled
by offering session description files via HTTP, RTSP or SAP [50].

Since RTP is less well known than HTTP I will outline it in slightly more
detail below.

The anatomy of RTP packets

The RTP protocol specifies the format of a header that is prepended to all of
the packets in a stream. The actual data in a packet is referred to as the payload,
and usually consists of an integral number of logical units (e.g. MPEG frames).
Units may, however, be split between packets.

RTP headers contain the following parameters (see figure 3.3). Numeric
values are big-endian and unsigned.

32

Version (V) A two-bit number that identifies the RTP version (a value of two
indicates an RFC 3550 packet).

Padding (P) A one-bit flag that, if set, specifies that padding bytes follow the
payload. If so the last padding byte specifies the number of bytes to be
ignored.

Extension (X) A one-bit flag that, if set, indicates that the main header is fol-
lowed by an experimental header extension.

CSRC count (CC) A four-bit number that specifies the number of contributing
source (CSRC) identifiers at the end of the header.

Marker (M) A one-bit flag that, if set, marks the packet as exceptional; the
exact meaning depends on the type of data being streamed. For instance,
when streaming MPEG video a set flag indicates that a packet contains
the rest of a frame that had to be split between several packets.

Payload type A seven-bit number that specifies the payload type. For in-
stance, RFC 1890 [51] defines payload type numbers for several codecs
and data types, including MPEG audio (14) and MPEG video (32).

Sequence number A 16-bit number that is incremented by one for each packet
sent, enabling receivers to easily sort data in the right order and detect
packet loss. (After it reaches it maximum value (65535) it wraps around
to zero.)

Timestamp A 32-bit number that represents the time when recording of the
payload started, making it possible for receivers to synchronise multiple
streams and to detect network jitter (the variance in packet transit times).
The timestamp’s resolution depends on the type of data being streamed.
Since different data types (e.g. MPEG video and MPEG audio) often use
timestamps with different resolutions, related streams are synchronised
using out-of-band RTCP packets (see 3.4.3).

Synchronisation source (SSRC) identifier A 32-bit, randomly chosen number
that uniquely identifies a stream source. (The source address of a packet
is not necessarily a unique ID. For instance, sources located behind NAT
gateways may happen to share the same IP private IP address11.)

Contributing source (CSRC) identifiers A row of 0 to 15 32-bit numbers that
indicate the SSRC IDs of the sources that contributed to a packet. (RTP
supports entities called mixers, for instance placed at firewalls between
networks, that combine and forward packets. Packet payloads are some-
times also transcoded to other formats. In a conference setting it is often
desirable to identify speakers and other contributors; CSRCs make this
possible. If the number of contributors exceeds 15 some will not be cred-
ited.)

If the extension flag is set the main header is followed by an extension
header containing the following fields:

11See [32, 52] for more information.

33

Type-specific data 16 bits whose meaning is dependent on the type of data
being transported.

Header extension length A 16-bit number between 0 and 65535 that specifies
the number of 32-bit extension data words that follow.

Header extension data Optional data associated with the extension header.

Extension headers are used for protocol experiments where experimental
data need to be placed in the header; it is otherwise recommended to use the
payload itself for such purposes.

RTCP

RTP receivers are expected to send reception feedback to all other participants
in a session, using the RTP Control Protocol (RTCP), to aid flow and conges-
tion control, diagnose distribution problems and for adjusting adaptive codecs.
RTCP is also used for management tasks such as keeping track of participant
IDs in case of conflicting SSRCs, and for providing the necessary data to syn-
chronise related streams (e.g. video and audio tracks).

To make scalable distribution possible the amount of RTCP traffic is limited
by making participants adjust their RTCP transmission rates such that the total
rate stays below a certain threshold (usually 5% of the streams themselves).

RTCP can be used for transporting simple session control information, such
as participant names.

Source-specific multicast

Source-specific multicast (SSM) [15] is an IP multicast scheme that differs from
traditional any-source multicast (ASM) in that a multicast group is defined by
the source IP address as well as the target multicast group; in other words a
group can contain only one source. SSM is therefore well-suited for one-to-
many applications such as video and audio streaming.

No standards currently define the RTCP communication from receivers to
senders in SSM settings; receivers should therefore not send any RTCP data
upstream.

Comparison with HTTP

Since RTP is rarely used without another protocol (such as HTTP) for non-
transportation tasks, I will summarise RTP’s strengths and weaknesses in the
section on RTSP below.

3.4.4 RTSP

The Real Time Streaming Protocol (RTSP) [53] combines many of the character-
istics of HTTP and RTP into a general, high-level streaming protocol suitable
for on-demand and real-time applications, using either unicast or multicast dis-
tribution. In addition to merely acting as a source of streaming data, an RTSP
server can also participate in conferences by recording or playing back content.

34

DESCRIBE rtsp://localhost/movie.mp4 RTSP/1.0
CSeq: 1
Accept: application/sdp
User-Agent: VLC Media Player (LIVE.COM)

Figure 3.4: Example of an RTSP DESCRIBE request. Note that request URIs are
absolute. The CSeq field is incremented by one for each unique request.

RTSP uses very HTTP-like semantics and procedures for controlling streams
(the similarity is intentional, and allows reuse of HTTP mechanisms such as
authentication and security). In contrast to HTTP, streams are usually trans-
ferred separately from the control traffic. Also, while HTTP itself is a stateless
protocol, state information is highly significant in RTSP. Finally, RTSP allows
requests to be made both by clients and by servers (for instance to notify a
client that a streaming parameter has changed).

In order to fulfill its role, RTSP supports streaming-specific functions such
as time-based seeking and pausing of playback.

Requests

RTSP requests are structurally very similar to those defined by HTTP, and be-
gin with a line containing a method, the URI it applies to and an RTSP version
string; fields are separated by space characters (see figure 3.4). The first line is
followed by zero or more header lines in exactly the same way as in HTTP.

Control traffic can run on top of both TCP and UDP (TCP is preferred). An
RTSP server will therefore usually listen to requests on two ports (one TCP and
one UDP). The default port number for both is 554.

A typical streaming session is initialised by a client sending a SETUP re-
quest for a stream or aggregate of streams (e.g. a TV feed comprised of one
video and one audio stream). The request must contain the client’s preferred
transport mechanism (e.g. RTP unicast, see 3.4.3) as part of the header. If the
requested resource is found (and the client is allowed to access it) the server
prepares itself to start streaming, and returns an HTTP-like reply that includes
the actual transport mechanism chosen12, as well as an identifier that must ac-
company all further requests concerning the session.

When the session has been such readied, the client may instruct the server
to start streaming by issuing a PLAY request.

RTSP includes several other methods; see [53].

Transport mechanisms

Delivery of streams is based on RTP, either on top of UDP (unicast or multicast)
or TCP, or even embedded in the RTSP control channel itself.

RTSP is combined with multicast distribution either when an RTSP server
provides descriptions for simple multicast sessions, or in the case of cyclical

12Any firewalls en route are expected to parse SETUP requests and make the necessary acco-
modations for streaming to work. It is therefore necessary that all such requests carry transport
information, even in cases where the server dictates transport parameters.

35

on-demand applications (similar to traditional pay-TV systems with looping
movies).

If firewalls or other network problems prevent pure RTP transportation
from working, RTSP supports the embedding of binary RTP packets inside
the connection otherwise used for control traffic alone. Because it increases
overhead and complexity this should normally be avoided.

Advantages

Since RTSP and RTP are often used together, the advantages and disadvantages
of both are combined in the following overviews.

RTSP and RTP have many positive qualities, mostly associated with their
openness and being tailored for streaming applications. The most important
are these:

• RTSP and RTP have been designed specifically for streaming. RTSP there-
fore supports useful features such as seeking, pausing and resuming.

• RTP streaming on top of UDP is more efficient than HTTP streaming, due
to the limited overhead involved.

• Both RTP and RTSP are open standards, and a large number of imple-
mentations exist. Though not as ubiquitous as HTTP both are relatively
well known among developers.

• Both protocols have been designed to be quite flexible and applicable to
many problems.

• Obtaining perfect copies of RTP streams is not trivial, implying an obsta-
cle for illegal copying.

Disadvantages

All is not rosy, though. Both protocols have problems, mostly associated with
complexity, familiarity and the general problem of scalable streaming on the
Internet:

• Both RTP and RTSP are considerably more complex than HTTP, making
developing and troubleshooting applications that use them more diffi-
cult.

• Both protocols are less familiar to developers, administrators and users.

• A significant number of firewalls, NAT routers and other network equip-
ment block or do not support RTP and RTSP properly.

• While RTP is more efficient than HTTP it still suffers from scalability
problems. This applies even when ASM multicast is used, since clients
are expected to provide RTCP feedback. (Additionally, ASM suffers from
complexity, scalability and security problems itself13.)

13Routing of ASM traffic for groups with many participants is challenging since it requires keep-
ing very large routing tables. Also, any participant may transmit data, enabling both malevolent
injection of data and denial of service attacks.

36

• As previously mentioned, making copies of RTP streams is usually rela-
tively difficult. While this probably is a comfort to some content owners,
it may represent a problem for viewers, listeners and users of streams.

3.4.5 SAP and SDP

It is sometimes desirable to announce multicast sessions without resorting to
unicast mechanisms such as HTTP and RTSP. RFC 2974 [50] defines the Ses-
sion Announcement Protocol (SAP) for distributing announcements to poten-
tial users via well-known multicast groups. (Both many-to-many conferences
and one-to-many broadcasts are supported.)

SAP announcements are usually encoded according to the Session Descrip-
tion Protocol [54], which includes such details as session name; home page
URI; contact information (email, phone etc.); and start and end times.

3.4.6 Proprietary protocols

Both Windows Media, QuickTime and Real seem to include proprietary stream-
ing protocols, but all of them support streaming of their respective closed for-
mats on top of RTSP and RTP.

37

Chapter 4

The Pycast encoding system

4.1 History

The multimedia project group at Østfold University College has worked with
audio and video streaming since the mid-1990s. Early projects included stream-
ing of the 1994 Olympic Winter Games at Lillehammer. This section describes
the history of our MP3 streaming activities, which began in 1998.

In the beginning MP3 audio was encoded using simple shell scripts (im-
plemented by Thomas Malt). Data was read either from a sound card or from
a dedicated hardware MP3 encoder (the Netcoder, made by Audioactive [55])
via a serial port. The data would be sent directly to the streaming server, since it
was already encoded. The raw (PCM) audio data from the sound card needed
to be distributed to two or three encoder processes for encoding into different-
quality MP3 streams (128, 56 and, optionally, 24 kbit/s). This splitting was
achieved by sending the data to named UNIX FIFO pipes (one for each bit-
rate) using a series of —tee— instances. Each encoder process could then read
the data from its assigned pipe, and send the encoded audio to the streaming
server.

cd /tmp/

mkfifo nrk-p1-128 nrk-p1-56 nrk-p1-24 nrk-p2-128 nrk-p2- 56 nrk-p2-24

sox /dev/dsp-p1 | tee nrk-p1-128 | tee nrk-p1-56 > nrk-p1-24 &
sox /dev/dsp-p2 | tee nrk-p2-128 | tee nrk-p2-56 > nrk-p2-24 &

lame -b 128 nrk-p1-128 | (echo ’header, nrk-p1-128...’; cat) | nc localhost 8000 &
lame -b 56 nrk-p1-56 | (echo ’header, nrk-p1-56...’; cat) | n c localhost 8000 &
lame -b 24 nrk-p1-24 | (echo ’header, nrk-p1-24...’; cat) | n c localhost 8000 &

lame -b 128 nrk-p2-128 | (echo ’header, nrk-p2-128...’; cat) | nc localhost 8000 &
lame -b 56 nrk-p2-56 | (echo ’header, nrk-p2-56...’; cat) | n c localhost 8000 &
lame -b 24 nrk-p2-24 | (echo ’header, nrk-p2-24...’; cat) | n c localhost 8000 &

Figure 4.1: Sketch of original FIFO-based encoding system

38

4.1.1 Problems

While the solution outlined above was appealing in its simplicity (for instance
it consisted of only a small number of well-known and relatively user friendly
UNIX commands) it had several disadvantages.

The script’s most important shortcomings were instability and frequent er-
rors at launch. Both were usually caused by buffer overruns that occured when
one of the MP3 encoders was unable to read input data from its FIFO pipe
rapidly enough (for instance if the encoder crashed). The overrun would cause
one of the —tee— processes to terminate, thus breaking the entire command
pipe, leading to a crash. The problem was especially common at start-up, since
the delays associated with starting each process and an overall increase in CPU
load increased the chances of overflowing FIFO buffers.

Also, while the system was conceptually quite elegant, its adherence to
standard shell mechanisms like pipes, redirects and spawning of background
processes (each branch or sub-branch of the pipe hierarchy needed to run in
parallel) led to very verbose and redundant code. For instance adding a new
bitrate involved splicing the associated code (which was almost, but not com-
pletely, identical to the code for the other bitrates) into an already very long
command line. The result was that changes, debugging and improvements
were difficult to perform, discouraging experimentation.

4.2 Pycast

It was clear that the system needed fundamental changes to keep up as the
number of channels, bitrates and distribution methods grew. It was also quite
obvious that configuration information should be moved to a separate file, and
not be interspersed with the programme code.

One option was to keep using shell scripting, but organise the code using
more traditional programming constructs. Unfortunately shell code has a ten-
dency to lose much of its elegance when that threshold is crossed. A prototype
was therefore implemented in Python, and early tests confirmed that we were
on the right track. (The Python code was much clearer, and everything indi-
cated that it would scale well.)

Much of the original system’s pipeline metaphor was retained in the Python
version. Speficically, the significant command line components (e.g. data sources,
encoders and streaming server transmitters) now appeared as classes, and the
component structure was specified in a hierachically origanised XML file. The
application was (not surprisingly) named Pycast.

We have now used Pycast for MP3 and Ogg continously since the summer
of 2001. Among other things it has been upgraded with functionality for en-
coding more audio formats, multicasting, and clustering.

4.2.1 Physical structure

Our real-time radio streaming system, shown in figure 4.2 currently1 consists
of four encoding servers running Pycast, feeding an Icecast streaming server.

1May 2005

39

ã ä å æ ç ä æ åè é ê å æ ä æ ç ê

ë ì í î ê å æ ä í ï ð é ä ñ
ê æ ç ò æ ç ê

ã í æ í î ê å ç æ î ó ô å é õ æ
ê å ç æ î õ é ä ñ ê æ ç ò æ ç

ã í æ í î ê å
ç æ ö ó æ í å ï ç

ê æ ç ò æ ç

÷ ø ù ú û ü

Figure 4.2: Physical structure of HiØ’s real-time radio streaming system

A second Icecast server located at NRK’s headquarters in Oslo, acting as a re-
flector, redistributes all of the streams, reducing the load on HiØ’s Internet
connection. (The simple load management scheme used works by generating
M3U files2 that direct half of the listeners directly to HiØ’s streaming server,
and the rest to the reflector.)

Three of the encoding servers are part of an openMosix [56] cluster, and re-
ceive a Digital Video Broadcasting (DVB) transport stream (TS) for transcoding
from the Thor 3 satellite. The fourth server (not shown) is used to transcode
the NRK P1 channel as received via Digital Audio Broadcast (DAB)3.

The streaming server is also responsible for distributing all of the radio
channels via IP multicast.

4.2.2 Overview

Pycast integrates the various components involved in capturing, digitising, en-
coding, transcoding and distributing audio streams. The source of a stream is
usually a capture card (e.g. a DVB card or analogue sound card), but receiv-
ing data from a streaming server is also supported. Digitisation using suitable
parameters (sampling rate, resolution etc.) is needed when reading from ana-
logue sources. Pycast uses tools from the LinuxTV project [57] for DVB input
and Sox [58] for analogue sampling and processing.

At the moment Pycast can encode to MP3 (using Lame [59]) and Ogg Vorbis
(using OggEnc [60]), but it is quite simple to add support for other formats.
Streams can be distributed via Icecast [1] 1 (MP3) and Icecast 2 (MP3 and Ogg
Vorbis) streaming servers, as well as RTP multicast (MP3).

A typical structure for streaming one radio channel in several bitrates and
formats is shown in figure 4.3.

2M3U files are used to direct media players to audio streams, and usually consist of one single
line of plain text with the URL of the stream in question. Such files are necessary to ensure that
streams are not opened by web browsers themselves.

3The DVB version of NRK P1 contains regional programming that is not always in sync with the
national radio schedule. Using the DAB feed therefore eliminates a potential source of confusion.

40

ý þ þ ÿ � � � �
� � � � � 	

� � �

� � � � � ÿ � � �
� � � � � � � � �
 �

� � � � � � �

� � � � � � � � � � � � � �

� � � � ! " þ � � � � �
� # $ % � � & % � ' (�
 (�
 �) # � � � � *
 � � � � � � �
 �

� # � � � � � � � �

� � � � � ÿ � � �
� � � � � � � � 	 �

� � � � � � �

� � � � ! " þ � � � � �
� # $ % � � & % � ' (�
 (�) # � � � � *
 � � � � � � �
 �

� # � � � � � � � �

� � � � � ÿ � � �
� � � � � � � �
 �

� � � � � � �

� � � � ! " þ � � � � �
� # $ % � � & % � ' (�
 (
 �) # � � � � *
 � � � � � � �
 �

� # � � � � � � � �

Figure 4.3: Typical Pycast structure. The output from a TSSource object (an MP2
elementary stream) is split and flows to three MP3Encoder objects. Each MP3Encoder
object handles transcoding of a stream from MP2 to MP3, based on a set of param-
eters (e.g. bitrate). The resulting MP3 streams are forwarded to an Icecast server
via corresponding IcecastSender objects, placing each stream at its appropriate URI
(mountpoint) on the server.

Here, an unencrypted MP2 elementary stream is extracted from a DVB
transport stream. It is then cloned and sent to six encoder objects to be trans-
coded to MP3 and Ogg Vorbis at different qualities. (The MP3Encoder module
can optionally transcode streams by decoding them first. This might seem less
efficient than using one common object for decoding, but in its current form
Pycast works better with short chains of objects.)

Each encoded stream is then fed to the streaming server via its own Icecast-
Sender. (RTPSender objects could also be added alongside the IcecastSenders
to enable multicast streaming.)

See figure 1.1 for an overview of how Pycast is integrated with other appli-
cations.

4.2.3 Design method

Pycast began as a simple application to replace tools that did not perform sat-
isfactorily (see 4.1.1). It has since been extended and altered to solve problems.

In other words Pycast as a system has grown quite organically. As a conse-
quence it suffers from a lack of consistency. This should be corrected in future
work.

4.2.4 Modules

As indicated in the figures, Pycast is based on modules processing data in a
tree-like structure. Modules are implemented as classes, and inherit from one
or both of the superclasses Producer and Consumer, which are both children
of PipelineComponent (figure 4.4).

PipelineComponent implements basic functionality common to all mod-
ules. Producer objects generate data, either by processing data from another

41

+ , - . / , 0 .
1 2 3 - 2 0 . 0 4

+ 5 2 6 7 8 . 5 1 2 0 9 7 3 . 5

: ; ; 2 7 5 8 . < + = > 0 8 2 6 . 5 ? 8 . 8 @ 9 4
; . 0 6 . 5

4 A 5 . @ 6 , 0 B C
: A 5 . @ 6

Figure 4.4: UML diagram of representative classes

component (e.g. MP3Encoder) or by importing data from an external source
(e.g. TSSource), and sending it to one or more Consumer objects. Consumer
objects receive data from a Producer and either process it for distribution fur-
ther down the pipeline tree (e.g. MP3Encoder) or send it somewhere outside
the Pycast system (e.g. IcecastSender). Most classes are both Producers and
Consumers.

Because Producers need to operate asynchronously, the Producer class also
inherits from Thread in Python’s threading module.

Common modules

Pycast has a number of modules for various purposes, however most of them
are experimental. The most commonly used (and thus, most thoroughly tested)
are these:

HTTPSource Reads data from an HTTP streaming server. Coupled with an
RTPSender it is useful for relaying a stream for multicast distribution.

IcecastSender Sends a stream to an Icecast-compatible streaming server (older
versions of Pycast supported Icecast 1 servers; the current version supports Ice-
cast 2).

MP3Encoder Encodes its input data (either raw audio or MP2/MP3) into
MP3 using Lame.

RTPSender Multicasts its input data to a specified group using RTP. For par-
tially unknown reasons the current implementation is incompatible with Quick-
Time Player and RealPlayer, but works well with VLC.

SoundcardSource Reads data from an analogue sound card using SoX [58].

TSSource Receives an MPEG transport stream multicast by dvbstream [61]
and extracts a specified elementary stream. (dvbstream runs separately, often
on another computer.)

42

<pycastconfig>
<tssource group="224.55.44.30" port="5000" pid="652">

<mp3encoder bitrate="128" type="mp2" resample="44100">
<icecastsender mountpoint="/nrk-p2-128" password="xxx "

bitrate="128" header="header-nrk-p2-txt"
host="192.168.0.21" port="80" />

</mp3encoder>
<mp3encoder bitrate="56" type="mp2">

<icecastsender mountpoint="/nrk-p2-56" password="xxx"
bitrate="56" header="header-nrk-p2-txt"
host="192.168.0.21" port="80" />

</mp3encoder>
<mp3encoder bitrate="24" type="mp2">

<icecastsender mountpoint="/nrk-p2-24" password="xxx"
bitrate="24" header="header-nrk-p2-txt"
host="192.168.0.21" port="80" />

</mp3encoder>
</tssource>

</pycastconfig>

Figure 4.5: Typical configuration file

VorbisEncoder Encodes its input data (only raw audio is supported) into
Ogg Vorbis, using OggEnc.

Configuration

As previously mentioned Pycast is configured using an XML file, since XML’s
hierarchical structure maps well to the internal module structure. An example
is shown in figure 4.5 (the file describes the structure in figure 4.3).

4.2.5 Parallel processing

Since Pycast consists of components that pass relatively low-bitrate data4 be-
tween each other in quite predictable ways it lends itself well to parallelisation.

Parallel processing with Pycast is useful when encoding more streams than
one single computer can handle. We initially distributed the encoding work-
load manually between our servers, by running a separate Pycast instance on
each. The main advantages of such an approach are simplicity and separa-
tion of work, so that if one computer goes offline it will only affect a subset of
the streams. On the other hand it makes it more difficult to efficiently exploit
the available CPU power, both because distribution by hand is more coarse-
grained (only entire channels can easily be moved) and because it can lead to
unneccessarily complex configuration files.

To make parallelisation simpler and more flexible we currently use open-
Mosix [56] for automatic migration of processes in a four-node cluster. open-
Mosix seems to handle our needs very well, and it is very easy to add or re-
move servers from the cluster: Slave nodes are booted using DHCP [62] and
TFTP[63], and as long as there is spare capacity in the cluster processes will
migrate away from slave computers that are gracefully shut down, with no

4The worst case is transmission of 48 kHz raw, stereo audio, with a data rate of 1.5 Mbit/s. Even
on a cluster with a 100 Mbit/s internal network this is unproblematic.

43

consequences for encoding quality or stability. If a slave node crashes the pro-
cesses it contains will be lost; Pycast reacts to this as if the missing processes
have crashed and starts corresponding new ones after a small delay.

If a cluster (or, indeed, one single computer) reaches more than full capacity
it will not be able to encode audio quickly enough. In the better case this leads
clicks and pops in the aduio stream; in the worse case components will start
to crash because of buffer overruns. We therefore keep an extra node online in
case one of the others should fail.

Using openMosix has worked well, reducing administrative load and mak-
ing it easy to add or remove nodes without temporarily stopping one or more
channels. However, since all encoding now relies on the master node the sys-
tem as a whole has become more susceptible to single-point failures, and it has
also become more difficult to debug.

4.2.6 Performance

We have used Pycast for all radio encoding since the summer of 2001, and it has
mostly worked very well. It should be noted that our realtime radio streams
are formally considered experimental and are operated with limited resources.
For instance, changes are usually incorporated into the production system after
relatively little testing.

CPU and memory efficiency is more than acceptable; the Pycast code itself
(excluding external programmes) usually consumes less than 2% of both. The
automatic openMosix migration usually works well.

Problems do occur from time to time, the most common being these:

• Satellite reception problems can cause dvbstream to crash, taking all DVB-
based streams down with it. This used to be a common problem, but was
solved by aligning our satellite dishes more carefully.

• An important design goal has been to isolate all Pycast components from
errors in upstream objects (i.e. receivers of data) or those in other branches.
For reasons that we have not yet had the opportunity to look into, the
isolation mechanisms currently do not work as intended. For instance,
problems on a streaming server can cause the entire application to slow
down and lose data; ideally only the object sending data to the server
should be affected.

• Components that rely on an external process currently use a relatively
unsophisticated method to check if it has crashed: If no data has been
received from the process within a certain amount of time, something is
assumed to be wrong and the external utility is restarted. During periods
of high system load, for instance when Pycast is started, this mechanism
can temporarily make things worse by adding the overhead of process
startups and terminations. (This problem is most of all just annoying,
and usually does not stop the system from working.)

• Pycast sometimes crashes or needs to be restarted for no obvious reason.
Problems like these typically occur around once per month, and can al-
most always be fixed by completely stopping and restarting it.

44

4.2.7 Further development

In the short term the issues most important to address are those described
above. In a slightly longer perspective we would like to add or change more
interesting features, such as the following:

Enhanced DVB and DAB integration

Pycast’s DVB support is currently a bit of a hack, based on receiving and de-
multiplexing an MPEG-2 transport stream multicast by the dvbstream utility
(see 4.2.4). This works relatively well, but it might be better to interface directly
with the DVB card drivers using library calls. Most importantly it would give
Pycast better control of its sources, and make troubleshooting and debugging
easier. (Since it is not a CPU-intensive activity, little potential for parallelisation
is lost by not using an external process.)

It would also be useful to add support for receiving DAB streams directly
from a PCI card or an external tuner. This would have many of the same ad-
vantages as using DVB (e.g. being able to receive several multiplexed streams
simultaneously), and also allow reception of streams not available via DVB
(such as regional channels).

Administration

It is sometimes desirable to be able to treat data branches individually, for in-
stance when a specific stream or channel needs to be restarted with a configu-
ration data. With today’s version of Pycast, however, it is necessary to restart
the whole application whenever even a small change has been made to its con-
figuration file. Making the Pycast administration interface more fine-grained
would therefore be quite helpful.

Other improvements

Pycast would also benefit from monitoring support (e.g. displaying detailed
status information via a web interface); support for other source types, codecs
and streaming servers; as well as integration with more external tools and li-
braries.

4.3 Statistics

We have systematically collected listener statistics for our unicast radio streams
since 17 September 2001; every five minutes the number of listeners connected
to a stream is measured via Icecast’s administration interface and recorded.

Figure 4.6 shows the highest number of listeners each month between Septem-
ber 2001 and early May 2005.

Listening patterns for a typical week can be seen in figure 4.7, which shows
the number of concurrently connected listeners for a period of seven days
(sampled every five minutes). It also indicates when network problems or
other unexpected events occurred, manifesting themselves as sudden drops
or spikes.

45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Jul 2001 Jan 2002 Jul 2002 Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005 Jul 2005

Highest number of concurrent listeners, by month

Figure 4.6: Monthly listener maxima since September 2001. The graph shows the
highest number of concurrently connected listeners each month. Notice the annual
fluctuations, with low points every summer.

 0

 500

 1000

 1500

Mon 02 Tue 03 Wed 04 Thu 05 Fri 06 Sat 07 Sun 08 Mon 09

Number of concurrent listeners

Figure 4.7: Concurrent listeners during first week of May 2005. The total number of
currently connected listeners is measured every five minutes. Notice the daily fluctu-
ations, and the reduced number of listeners during the weekend (as well as Thursday,
which was a holiday). Sudden value changes are usually caused by network problems.

46

Chapter 5

The Tista streaming server

5.1 History

5.1.1 Radio on demand, version 1

Our first radio on demand (RoD) system was developed by Torbjørn Mathisen
and John-Olav Hoddevik during the spring of 2000, as part of a third-year
student project [64]. It automatically recorded one of NRK’s radio channels1

(NRK Petre), and the recorded programmes were made publically available on
the web. The service became quite popular, with several hundred downloads
per day, and was therefore kept running after the end of the project.

Our ambition was to store programmes indefinitely, and programmes were
never intentionally erased. However, since the system ran on low-cost hard-
ware and with limited resources, data was sometimes lost, mostly because of
failing hard disks. Backups were not performed.

Hardware

The system was distributed across three identical PC-based servers (figure 5.1)
running Linux. One server (henceforth called the primary server) handled record-
ing and application logic; the others were used to store and serve MP3 files.
All of the servers were connected to the Internet; clients would stream a pro-
gramme directly from the server on which it was stored, instead of streaming
via the primary one.

Storage capacity was later increased, either by adding dedicated comput-
ers, or by using available space on other servers. Remote disks were mounted
via NFS, and file serving was moved to the primary server for improved se-
curity and easier management. NRK covered hardware costs (approximately
NOK 20,000 per year), since the project had attracted many listeners and yielded
interesting insight into on-demand streaming.

1NRK broadcasts nine national radio channels, of which P1 (light entertainment), P2 (special
interest) and Petre (youth and young adult) are the most popular.

47

D E F G H I J

K H F I J H I F

L M N O P Q R S T U
L V W W X S O Y Z S P T
L [Z P Q Y U N
L [Z Q N Y \ S T U

] ^ _ F I H I J _

L [Z P Q Y U N
L [Z Q N Y \ S T U

L [Z P Q Y U N
L [Z Q N Y \ S T U

Figure 5.1: The original radio on demand system

Software

The system was simple but effective: A script ran on the primary server once
every night (via cron 2) and downloaded the next day’s programme schedule
from NRK’s website. The retrieved HTML file was parsed, and the programme
metadata (including start time, title and programme description) stored in a
MySQL [65] database. A series of at 3 jobs were then created to start and stop
the recording of each programme.

All updates to the programme database were made during a six-hour win-
dow each night when no programmes were broadcast and recording was turned
off.

Audio was initally sampled and encoded locally, but to make management
simpler, the recording subssystem was later modified slightly to use already
encoded MP3 streams from our unicast radio server instead.

The hard disks of the two secondary servers were mounted on the primary
server using NFS. The disk used for storing new files was selected cyclically
at the beginning of the day. This worked well in the beginning when all disks
were of identical size, but the script was later modified to choose the disk with
the most available space.

5.1.2 Radio on demand, version 2

In the early spring of 2002 we were asked by NRK to extend the radio on de-
mand system to record two other channels (NRK P1 and NRK P2) in addition

2The UNIX subsystem for periodic execution of jobs.
3The UNIX subsystem for timed (but not repeating) execution of jobs.

48

to NRK Petre. Programmes from the two new channels would be used exclu-
sively in-house by NRK for planning, and not be made available to the public.

To accommodate the new requirements several changes needed to be made
to the system, including adding support for round-the-clock recording (NRK
P1 and NRK P2 are broadcast continuously) as well as improvements to meta-
data handling and the web search interface. Additionally, much of the code
was refactored, and downloading of programme schedules made more robust
by retrieving information several days in advance (thus, if a schedule failed to
download one night it would probably work the nest). Most of the changes
were implemented by Håvard Rast Blok.

We continued to add storage capacity by purchasing dedicated (but low-
cost) NFS servers, and by using surplus space on other computers.

It became increasingly obvious that such a simplistic solution led to com-
plex problems when scaled up: Recording three channels, each at 128, 56 and
24 kbit/s, consumes six gigabytes of disk space per day. As the number of hard
disks and servers grew, hardware failures became frustratingly common.

5.1.3 Lessons learned

The experiences from developing and running versions one and two of our
radio on demand taught us useful things:

• Successful recording should not depend on having a correct schedule,
or having a schedule at all. In our system a missing schedule meant that
recording would not be started, and schedule errors that recording would
start or stop at the wrong times. Such errors therefore led to problems
that were respectively either impossible or difficult to correct.

• Since a standard web server (Apache [66]) was used for streaming the
recorded files it was difficult to extract arbitrary parts of a programme.
Clients that use the HTTP Range header [48] (e.g. WinAmp) do allow a
user to move around quite freely inside a streamed file using educated
guesses based on the file’s bitrate. (In a file with a well-known and con-
stant bitrate the relationship between the time offset t and the byte po-
sition is simply bt/8, where b is the bitrate.) Unfortunately, there is no
standardised way of indicating the desired offset in a file as part of a
URI.

• A multi-computer system whose well-being depends on all its partici-
pating machines to be working well can become very fragile, unless it
incorporates some amount of redundancy. In our case adding such re-
dundancy was not trivial.

• Hard disks and other hardware regularly fail. In systems with many
computers failures can become very common.

• Cheap hardware fails more frequently than server-grade hardware, but
is often easier (and less expensive) to replace or repair.

• Simple solutions do not necessarily scale well.

49

5.2 The Tista streaming server

In early 2003 NRK decided to officially incorporate radio on demand as a part
of their official Internet services. We were therefore asked to improve our radio
on demand system so that it could be used in a relatively large-scale production
environment. The result was the Tista4 streaming server.

5.2.1 Requirements

In co-operation with NRK we identified the following key requirements:

• It would be integrated with NRK’s existing services and infrastructure,
and should therefore be easily manageable and at least as robust as other
similar systems at NRK.

• It should be based on MP3 audio streamed over HTTP, for maximum
client compatibility.

• It should scale to a large number of simultaneous listeners (the original
goal was 1000, later reduced to 600, due to hardware limitations).

• It should be able to store at least three weeks of audio data for three chan-
nels, at three bitrates (128, 56 and 24 kbits/s).

• Storage should be very reliable.

• It should work on Intel-based hardware running Red Hat Linux.

• After development had finished, it should be easy to move the system to
NRK and put it into production.

5.2.2 Design method

The design process was iterative, and consisted of the following stages:

• Identifying system requirements (see 5.2.1).

• Identifying and avoiding the most serious shortcomings of the previous
versions (see 5.1.3).

• Quickly developing and testing simple prototypes (see 5.2.3), until we
were reasonably we had found one worth elaborating on.

• Adding functionality incrementally, and testing it reasonably thoroughly
for each step. (We did not, however, use automatic code testing of any
sort; that is worth considering for further work.)

• Testing the final system thoroughly, including subjecting it to realistic
loads and usage patterns (see 5.3.3). If problems were discovered points
4 and 5 were repeated, until the system was deemed fit for deployment.

4For the curious: The server is named after the river Tista which flows through the town of
Halden, where we are located.

50

5.2.3 Design choices

The project offered the opportunity to correct well-known flaws and shortcom-
ings in the older RoD versions. Few serious problems were encountered during
the implementation5.

The most important design choices made are outlined here.

Programming language

The two candidate implementation languages (because of our previous expe-
rience with both) were Python and C (C would have been used to write light-
weight CGI scripts that could be used in conjunction with Apache).

The initial plan was to base the streaming server on Apache, and use mod -
python [67] or light-weight C programmes to implement support for specify-
ing arbitrary time intervals (start and stop times) as part of a URI.

Early tests showed that the overhead associated with such a solution was
too high, since Apache allocates a separate thread (or process) to each request.
Even serving files directly with Apache (which the original RoD system did)
scales poorly. (Apache’s scalability problems are not too surprising in retro-
spect: It is designed for serving relatively small files, not for continous stream-
ing).

Other, more light-weight web servers were not considered. This was an
oversight: If a suitable server had been found and proved to work well, it
could have saved us some time, but we believe that the end result would not
have been significantly better.

Python turned out to be a good choice. I will refrain from elaborating this
conclusion in detail, and limit myself to mentioning these few points:

• The interactive interpreter aids debugging and experimentation.

• Solving problems in Python requires fewer lines of code than languages
such as Java, C and C++. Less code equals fewer errors, and makes read-
ing and understanding the code easier and quicker. Also, a larger portion
of a programme can be kept in the brain’s short-term memory.

• The lack of a separate compilation stage leads to less time wasted waiting
for results.

• The stricter code layout rules (compared to Java, C and C++) aid compre-
hension.

• The built-in types and data structures reduce the time wasted implement-
ing such constructs, or working around language shortcomings.

• Python, unless typical scripting languages like Perl, scales well even for
large systems.

5One unfortunate surprise late in the project was that one common version Windows Media
Player had signficant problems streaming MP3 audio. This problem should be considered a result
of the requirements specification.

51

` a b c d a c be f g b c a c d g

h i j k g b c a j l m f a n
g c d o c d g

` j c j k g b d c k p q b f r c
g b d c k r f a n g c d o c d

s f g b k
g b d c k r f a n

g c d o c d

t c u
v d l a b q

c a m

w x y z { |

Figure 5.2: Physical structure of NRK’s radio-on-demand system

Schedule sensitivity

It was clear early in the design process that the recording susbsystem should
not have to depend on correct programme scheduling information.

Storage

The most important requirements for the storage medium was scalability (to a
large number of concurrent users), redundancy and reliability.

An ATAboy IDE-based RAID array (with a SCSI interface) from Nexsan
Technologies [68] was chosen. It supported RAID 5, had plenty of space, rela-
tively high performance, and was based on low-cost IDE disks.

Metadata storage

Metadata need to be stored to enable searching, and so that information such as
programme names can be displayed in a user’s media player during playback.
Tista had to be able to store, query and retrieve a relatively large number of
programmes6, making it impractical to use regular filesystem storage.

MySQL was chosen, since it was already in use at NRK, and is easily inte-
grated with Python.

5.2.4 Physical structure

Figure 5.2 shows the hardware configuration that was used to run NRK’s on-
demand system. Computers at HiØ encoded the various streams, which were
then distributed via an Icecast server.

The Tista recording server, located at NRK’s headquarters in Oslo, received
the MP3 streams via the Internet, in the same way that any other client would.

6Assuming an average of two programmes broadcast per channel per hour for three weeks, it
is necessary to store 1008 records to cover a period of three weeks, or more than 3000 for three
channels.

52

Figure 5.3: Directory structure

The user interface was generated by another web server at the NRK, serving as
a user-friendly front end to the system.

5.2.5 Recording

To avoid the problem of programme schedule dependence, recording is done
in one-hour chunks7. Each stream is continuously stored on disk. At the start of
a new hour a new file is created to store the next hour’s worth of data. Files are
named based on a stream’s name, its format and bitrate, as well as the date and
hour that the file was created (figure 5.3). A file is therefore easily identifiable
later even if it has been moved from its original directory.

Files are organised in hierarchical directory trees, potentially distributed
across several disks or partitions. If more than one mountpoint is used new
files will be placed where the most space is available.

Tista currently assumes that all streams have constant bitrates (CBR). (It can
easily be extended to support variable bitrate (VBR) data as well. However,
calculating byte offsets in VBR files is slightly more difficult, and has not been
implemented yet.)

The recording server

The recorder (record.py) runs in the background as a daemon, and continu-
ously downloads and stores on disk one or more MP3 streams from an HTTP-
based streaming server (see figure 1.1).

Each stream is handled by its own thread. If the connection to a source is
lost, the thread will wait for a configurable number of seconds (default: 30)
before trying to reconnect. (The wait should be short enough to cause minimal
loss of data, but long enough to avoid unduly stressing the streaming server or
the network.)

The recording daemon also contains experimental support for archiving
Windows Media (WMA) streams, based on the freely available mmsclient[69]
utility. Recording does work, but archived WMA streams can not yet be streamed

7The choice of one-hour chunks was quite arbitrary. One advantage is that the number of files
stored in each directory is quite low. A distinct disadvantage of such a large chunk size is an
increased risk of missing programmes

53

} ~ }� }� �

� �

� �
� �
� }
� �
� �

� � � � � � �

� � � � �� � � � �

Figure 5.4: Reassembling a programme (in this case one that lasts from 18:30 to 21:17
UTC)

to clients. (Most WMA clients do not support reading from arbitrary points in a
stream. Full WMA support therefore requires a seeking algorithm that is aware
of a WMA file’s structure.)

5.2.6 Reassembly

Programmes are assembled by the streaming server from one or more files on
demand (figure 5.4). If a programme starts after the exact beginning of an
hour a seek is performed to the corresponding point in the first file (based on
its bitrate) before data is read. The amount of data that is read is adjusted
similarily if the programme ends before the end of the last file that contains a
part of it.

When the streaming server receives a request it will check that the requested
interval is shorter than a configurable limit (default: 12 hours), to discourage
abuse of the service (i.e. downloading extremely large portions of archived
streams).

Streams are stored and reassembled in such a way that no data is lost be-
tween chunks. (Chunks are recorded “back-to-back”, and no data is ever dis-
carded between the closing of one chunk storage file and the opening of the
one that follows.)

5.2.7 The streaming server

The streaming server is Tista’s most important component, handling the ex-
traction and streaming of archived radio programmes to a potentially large
number of simultaneous listeners. It uses HTTP/1.1 [48] as its transport proto-
col, and is therefore compatible with the vast majority of media players.

Implementing a server capable of handling hundreds of simultaneous, long-
lived clients required a different approach than what is often sufficient to solve
simpler problems.

The main difference between Tista and most common web servers is the
time spent handling a typical request: the longer it takes to finish sending a
reply, the higher the number of active connections on the server.

54

Most web sites consist of mostly relatively small files (e.g. HTML files,
images and other documents), which are downloaded by clients at maximum
speed. In most cases a request can therefore be received, processed and a reply
completed in just a few seconds or less. Even if such a server receives high
number of requests per hour, the number of active connections at any point in
is typically quite low.

Streaming is significantly different for two reasons: The amount of data
transferred is usually large than for typical file requests (e.g. one hour of 128
kbit/s MP3 audio is more than 60 MB of data), and most clients will download
the data at the same rate at which it is played back. The majority of connections
will therefore last for several minutes or even hours, and the number of active
connections at any time will typically be high. This implies a large number of
open sockets and files.

A client’s download rate is limited to the requested programme’s bitrate
multiplied by a configurable factor (default: two). This is done to keep load
at a minimum (thus improving the quality of service for other clients), and to
discourage mass-downloading of the server’s contents.

As long as Tista is to be used for real-time streaming of on-demand content,
the transfer rate factor should be kept well above one, to ensure the clients’
pre-buffering phase (the time that a media player spends buffering data before
playback actually starts) be as short as possible.

Tista uses Psyco [70] for just-in-time compiling, if it is installed. All perfor-
mance testing of the streaming server was done with Psyco enabled, and Psyco
was also used while the system was in service at NRK.

Threads vs. select/poll

One obvious way to organise the serving of data to many clients at the same
time is to assign each client a thread (or process) responsible for communi-
cating with it. Unfortunately, such a solution does not necessarily scale well.
Experiments, with both Apache and a stand-alone Python-based server, indi-
cated that heavy multithreading carried with it a significant overhead (CPU-
wise and probably also memory-wise) that drastically limited the number of
simultaneous clients. Spawning separate processes would necessarily be even
more demanding for the computer.

A different, and in our case better, approach is to use the operating system’s
select call (interfaced by Python’s select module [71]) to periodically check
which clients are ready to receive data. This makes it possible to efficiently han-
dle at least several hundred clients at a time in a single thread. Tista still uses
several threads (e.g. one for listening to new requests, and one for streaming),
but using select keeps the number low.

By using Python’s poll class [71] (also an interface to underlying OS func-
tionality) it was possible to increase performance even more by avoiding inef-
ficiencies in select .

One disadvantage of using Python is that threads are tied to the inter-
preter process, and can not be independently moved to other CPUs in a multi-
processor system.

55

� � � � � � � � � � � � � � � � ¡ ¢ £ � ¡ � ¤ ¥ ¦ § ¨ ¦ © ª ¥ « § ¦ ¬ � ¢ � ® ¯ ° ± ²³ � ´ � �

µ ¶ · ¸ ¹ ¶ º » ¼ ½ ¾ ¿ ½ À Á

Â ½ Á º » º Á º Ã Ä º ¼ Á ¶ Å Æ Ç Ç È É ½ º » ½ ¼ Ê

Â ½ Á º » º Á º ¹ ¶ ¶ Ë ¿ Ä

Â ½ Á º » º Á º

Ì ¿ » Í ¶ » º Á º

Figure 5.5: Download sequence. Web front end is the web server running NRK’s
user interface.

Figure 5.6: Example of metadata displayed during playback: Channel name followed
by programme name, and the date and time it was originally broadcast. The media
player (in this case Apple’s iTunes [72]) calculates the programme’s length based on its
bitrate and size.

File descriptors

Linux uses file descriptors to represent both open files and sockets (a file usu-
ally needs one descriptor; a bi-directional socket needs two). Tista must there-
fore allocate three file descriptors for every listener (two for the socket and one
for the file object reading data from the disk).

In other words Tista potentially needs significantly more file descriptors
than a typical web server. Most operating systems limit the number of file
descriptors available to processes run by regular users (it is recommended that
Tista be run by a regular user, not root). It is therefore advisable to raise the
operating system’s FD limit (this is done automatically by the included init
script).

Metadata handling

At startup the streaming server will try to connect to the metadata database
(see 5.2.8), and, if successful, use the connection to look up metadata (e.g. pro-
gramme names) for incoming requests. Metadata are sent as part of the HTTP
header (figure 5.5), so that media players can display relevant information dur-
ing playback (figure 5.6).

Synchronising MP3 streams

When starting a new MP3 stream (i.e. sending the first audio data to a new lis-
tener) the server will always start at a frame boundary (by scanning forwards

56

Î Ï Ð Ñ Ò Ó Ô Ò Õ Ï Ö × Ï Ø Ù Ö Ú Û Ü Ý Ï Û Ð Þ ß à á â à ã ä ß å á à æ Ñ ç Ü Ò è é ê ë ìí Ö Ú î ç Ï Ö

ï ð ñ ò ó ô ò ð õ ö ð ÷ ø
ï ð ñ ò ó ô ò ð õ ö ð ÷ ø

ï ð ñ ò ó ô ò ð õ ö ð ÷ ø

ù ð ÷ ö ú ø
ù ð ÷ ö ú ø û ü ý þ ÿ

ù ð ÷ ö ú ø û � � ý þ ÿ

Figure 5.7: Programme search sequence. The search script returns an XML file repre-
senting the results, which NRK’s front end web server presents using HTML.

in the data stream until one is found) to accommodate media players that ex-
pect this.

Logging

The server maintains two logs, one (tista_log) in a custom format (see Ap-
pendix F), and one (access_log) in Apache’s default access log format. The
former can log more details (detail level is configurable)8; the latter is compat-
ible with existing log analysis software.

5.2.8 CGI and mod python scripts

Tista includes a number of external CGI and mod python scripts to handle
metadata searching, M3U file generation, and receiving and storting schedule
information. These functions could have been integrated into the streaming
server itself, but we chose not to, since Apache already has excellent scripting
support.

The CGI and mod python scripts are designed to be easily integrated with
Apache 2.0.

Searching and M3U generation

Since searching and generation of M3U files are very common operations (a
listener will typically do both for every programme retrieved) these functions
are implemented using mod python for minimal overhead9. Both are defined
in the same file but presented on the Web at different URIs using Apache’s
RewriteEngine [73].

The search script was designed to work as an interface between Tista and
NRK’s own search scripts. Given a channel name, bitrate, format, start time,
end time, and optionally a parameter to limit the number of hits it will return
a list of zero or more (always lower than a hard-coded maximum value and

8For instance, Apache only creates log entries for finished requests. This makes sense for short
requests, but not for streaming requests which can take minutes or hours to complete.

9With mod python Apache does not need to start a new Python interpreter for every request.
Also, resources like database connections can be reused.

57

� � � � � � � � 	 �
 � � �
 ��
 � ! �

" # $ % & ' (&) *

" # $ + , - &
" # $ + , - &

Figure 5.8: M3U generation sequence. The web server sends the M3U file to an
appropriate media player.

possibly also limited by the maximum hits parameter) URIs for matching pro-
grammes (figure 5.7). The results are structured using a custom XML format
(see Appendix E), but if the optional parameter html=1 is supplied, they will
be presented using simple HTML. (This parameter is only intended to be used
for testing and debugging.)

The search script can be found at /services/public/search on the
web server (figure 5.8).

A second script (also implemented using mod python) receives the same
set of parameters that the search script returns, and produces a simple one-line
M3U file that refers to the actual programme, i.e. a URI on the Tista streaming
server.

Metadata reception

A CGI script (/services/private/gluon_receive) is used to receive, parse
and store programme information. Tista was designed for easy integration
with NRK’s existing metadata distribution system, Gluon, which pushes to
Dublin Core [74]-based metadata files to interested clients. Gluon is used to
transmit many different kinds of information in addition to programme sched-
ules (e.g. sports scores), but clients can choose to be sent only specific cate-
gories of data (in this case programme information).

When new programme data is available it will be fed to Tista’s gluon_
receive using an HTTP POST request. It is then parsed and stored in the
MySQL database (using channel ID and start time as the primary key, see
C). Information concerning channels that should not be archived is ignored.
(Gluon distributes metadata for several radio and TV channels.)

Monitoring

Tista also includes a CGI script for simple monitoring of the server (/services/
private/status), which displays the server’s uptime and load, interesting
processes, number of recorders running, number of listeners and the last three
lines of the main log file (tista_log , see Appendix F).

The monitoring script is useful for administrators to check if Tista is work-
ing properly. Since a relatively small amount of information is displayed, it
even works well with cell phone browsers.

58

5.2.9 cron scripts

Tista includes two cron scripts: one for automatically deleting expired audio
files (thus conserving disk space), and one to maintain a table in the database
of available programmes.

The file deletion script (cron/delete_old.py) is run nightly to delete
audio files older than a specified limit, as well as all directories that no longer
contains files or directories.

The search script needs to know which programmes are actually available
for download: A programme will be unavailable if it has not yet been recorded,
if sigificant errors occured during recording, or if it has later been deleted.

Because availability checking is a relatively costly procedure that has to
be performed for every programme within the scope of a search query, and
because it can not easily be integrated with SQL code, availability status is
cached in the database (see Appendix C). It is peridocally updated by the
update_availability.py script, which checks the status of recent pro-
grammes every five minutes, and checks older programmes every 24 hours.

5.2.10 Common library

The library rod3.py (so named for historical reasons) is shared by Tista’s other
components, and implements and defines various functions and constants10.

5.2.11 Times and dates

To avoid confusion and improve consistency, all times used for storing and re-
trieving files are in UTC and formatted according to ISO 8601 [75] as described
in RFC 3339[76]. This means that the system can easily handle transitions be-
tween standard and daylight saving time. It also simplifies management of a
RoD service that is used across time zones.

Conversion between UTC and other time zones is handled by other parts
of the system (e.g. the web interface).

To ensure consistency, all involved computers should use NTP [77] for time
synchronisation.

5.2.12 Error tolerance

As previously mentioned, Tista assumes that the bitrate of all streams is con-
stant and precisely known, as all extraction operations depend on it. The files
stored on disk are raw dumps of the data received.

This approach has two important disadvantages: It can not easily be used
to store variable-bitrate streams, and if errors occured during recording (or
streaming) entire one-hour chunks of data could be rendered useless. (Even a
small error will lead to lost data, and thus influence all offset calculations.)

Tista can therefore be configured to consider a file to be lost if its size differs
more than a certain percentage (default: 4%) from its expected size.

10Strictly speaking Python does not have constants. The term is used here to indicate a variable
that should not be changed after its initial definition.

59

http://malxrod01.nrk.no:8000/archive?channel=
nrk-petre&bitrate=128&start=2005-04-03T13:03:
00&end=2005-04-03T14:00:10

Figure 5.9: A typical Tista URI, which notably includes start and stop times for
extracting a part of an archived stream.

5.3 Results

Tista performed well both in a production environment at NRK, and in auto-
mated tests. Some problems were reported by users, but none was caused by
Tista itself.

5.3.1 Universal addressability

One very interesting aspect of Tista is that it can make any audio stream (even
while it is being archived) randomly seekable.

What makes it significantly different from other streaming servers is that
the start and stop points are specified as part of a URI. This makes hyperlinking
(e.g. to a specific radio programme, song, interview or quote) very easy.

See figure 5.9 for a typical example.

5.3.2 Scalability

Tista scaled well up to 700 simulated concurrent listeners (each listening to a
128 kb/s stream): New users who started a stream did not experience problems
or delays neither when connecting nor when streaming.

Beyond 700 listeners the bottleneck seemed to be a lack of bandwidth on
the PCI bus (which needed to handle communication with both the network
card and the SCSI bus).

After the configured maximum number of users was reached clients could
still download data, but at lower rate than the actual streaming rate (i.e. real-
time streaming was no longer possible). By reducing the bitrate of the streams
the server should therefore be able to scale much further.

At 700 listeners CPU load on the server was around 20%, mostly split be-
tween Tista, Apache and MySQL. Detailed CPU load records were unfortu-
nately not kept.

5.3.3 Automatic performance testing

To test performance an automatic testing script (see Appendix B) was run conti-
nously for up to 24 hours at full load (i.e. 700 listeners), and all parts of the sys-
tem (and the system as a whole) remained stable and responsive. For greater
realism the script was run on a number of computers at the same time, and not
on the one that housed Tista.

The testing script can simulate a realistic production situation by spawn-
ing an adjustable number of virtual clients. Each client will sleep for a ran-
dom number of seconds, connect to Apache, request a list of the 128 most re-
cently broadcast programmes, and randomly select one for download. The

60

programme is then downloaded in its entirety at maximum speed, before re-
starting the procedure by sleeping and connecting to Apache again. (Down-
loaded data are continuously discarded.)

The script can be configured to make its clients either pick a programme’s
bitrate at random (among the available ones), or always choose a specific rate.
Our experience indicates that the majority of real users stream at the highest
bitrate; always using the maximum rate therefore probably gives more repre-
sentative results.

By behaving quite similarily to real clients the script stresses the entire sys-
tem realistically, not only the Tista streaming server alone. This is useful since
it can uncover scalability problems in e.g. the database structure or in the web
scripts.

In a real-life situation clients’ choice of programmes will probably not be as
uniformly distributed as in the test, and will probably be clustered around the
most recent or most popular ones. This will most likely improve performance
and scalability, since the chances are greater that a requested piece of data is
already present in the file system’s buffer or the RAID system’s cache.

5.3.4 Problems

Tista worked very reliably in a production environment at NRK for eight months
(from October 2003 to June 2004), when it was phased out in favour of a Win-
dows Media-based solution. The problems reported by NRK’s users fall mostly
in the following categories, none of which was caused by Tista itself.

• Problems playing back archived programmes in Windows Media Player
(WMP). This seemed to be caused by a bug in popular versions of WMP,
and applied to MP3 streaming in general (i.e. the problem was not spe-
cific to Tista). The WMP problem eventually caused the change to the
WMA-based service.

• Problems caused by missing or incorrect metadata, due to errors or in-
consistencies in the data fed to Tista (e.g. programmes with identical
start and end times).

• Missing programmes, caused by interruptions of streams that Tista was
recording. Because of the way streams are stored, a few minutes worth
of missing data would be enough to make the streaming server consider
several programmes to be missing (i.e. all programmes completely or
partially broadcast during a damaged one-hour chunk). Improvements
to the storage routines would probably alleviate this problem.

5.4 Further development

5.4.1 Real-time streaming

Tista has already been extended by Andreas Bergstrøm to support real-time au-
dio streaming. Since this paper describes the older version of Tista without such
support, the software pointed to in Appendix ?? does not include the real-time
streaming code. It can, however, be found at http://tista.sourceforge.
net/ .

61

5.4.2 Robustness

As previously mentioned Tista has performed very well, but its current data
storage model has caused some programmes to be lost.

The most effective improvement to Tista would probably be more error-
tolerant storage of streams. For instance, each audio file could be accompanied
by an index file containing for every second worth of data a timestamp (e.g.
seconds since the platform’s epoch) and the position of the corresponding data
in the file; it would then be easy to find the right file and position given a date
and time, and if any data were lost it would not affect correctly stored data later
in the file (assuming that new audio and index data are continuously appended
to their respective files). M.Sc. student Jens Remi Karlsen is currently working
on implementing such a scheme. (Embedding the index information inside
audio files is another option. Unfortunately, this would yield non-standard
files that could not easily be used by other applications.)

Tista would naturally also benefit from redundant storage (e.g. running
two systems in parallel on separate computers with automatic synchronisa-
tion of data lost by one of them) as well as redundant encoding and streaming
servers to maximise the chances that valid audio data are available for down-
loading.

5.4.3 Other formats

The current implementation of Tista can only store and retrieve streams with
well-known constant bitrates, since the streaming server calculates file posi-
tions based only on a stream’s bitrate and a time offset. Handling of variable-
rate formats or streams whose bitrates are not precisely known, requires a more
sophisticated approach, like the method outlined in the previous section.

Media players also expect streams in many formats to begin with specific
headers and/or at specific points in the stream (e.g. at frame boundaries). Tista
currently only supports seeking to frame boundaries in MP3 streams.

It should be relatively easy to extend Tista to support formats like Ogg Vor-
bis and AAC, and even video formats like MPEG-4.

5.4.4 Other protocols

Tista uses HTTP both for receiving streams (for archiving) and for streaming
audio to clients. While HTTP is not an ideal streaming protocol it has important
strengths in its simplicity and familiarity.

An obvious improvement of Tista would be using RTSP [53] for sending
data. At least two kinds of solutions could be imagined:

1. Including an RTSP server in the Tista streaming server itself.

2. Integrating Tista with an external RTSP server, such as Darwin Streaming
Server [78] (DSS).

The former option would be more elegant but requires a robust RTSP mod-
ule (either pure Python code or a linkable library) that can easily be integrated
with the rest of the streaming server. I have not come across any such modules.

62

The latter option might seem a bit of a hack, but would make leveraging a
well-known and well-tested RTSP (e.g. DSS) quite simple. For instance, when
receiving a request for a programme Tista could extract the corresponding data
(using the same functions as when streaming using HTTP), store the assembled
programme as a file on disk and refer the client to the file via the RTSP server.
A significant disadvantage with this method is that it would be difficult to offer
a programme for streaming before airing has ended.

5.4.5 User interface

Tista currently has a Spartan user interface, designed to be used by adminis-
trators only. (The interface seen by regular users was implemented separately
by NRK).

System settings are specified in an XML file (config.xml, see Appendix D),
with the exception of a few options set directly in the Python code itself. Start-
ing, stopping and debugging are performed via the UNIX shell. Some runtime
information (e.g. listings of connected users) are avilable via Tista’s web inter-
face.

There is thus a lot of potential in improving and expanding the user inter-
faces for both administrators and users.

5.4.6 Scalability

As previously discussed, Tista scales well up to several hundred simultaneous
listeners on a relatively inexpensive computer. It should be trivial to increase
this number a bit further by clustering of servers or by using more advanced
hardware. Also, reducing the average bitrate of the streams being served (by
reducing quality or using more efficient compression, or both) can significantly
improve the capacity.

It seems likely that the popularity of on-demand delivery of media will
increase significantly in the near future. Creating a streaming system capable of
scaling to a really large number of concurrent users (i.e. hundreds of thousand
or millions) is certainly an interesting challenge. Tista should lend itself well to
experimentation with e.g. schemes for peer-to-peer distribution. (BBC’s plans
for its Creative Archive project[79] are a strong indication that solutions for
scalable distribution of high-quality digital media content will be increasingly
important in the future.)

Storing MP3-compressed audio is not very demanding. For instance one
channel of 128 kbps data consumes about 1.3 GB of disk space per day, or 470
GB per year. Storing a year’s worth of data is thus almost possible using only
one desktop IDE drive11. Even when considering the added complexity and
cost of a RAID system (for greater robustness and streaming capacity) storage
is not an important limiting factor. Indeed, if we assume that hard disk capacity
per unit of cost continues to double roughly every twelve months for a few
more years permanent and complete archiving of radio channels should be
within easy reach.

11On 14 May 2005 the highest-capacity hard disk available at the Komplett.no web store was a
400 GB serial ATA drive costing NOK 2450.

63

Permanent archiving of uncompressed audio or TV-quality (or better) video
is still not trivial. Also, any system designed to serve a very large archive
to a very large number of users would need efficient routines for replication,
caching and distribution of data.

5.5 Resources

Planning of Tista as part of NRK’s new radio on demand service began in
March 2003. Most of the system was implemented during April and the May.
Systematic testing began in June. couple of weeks.

Only minor changes were made during the late summer and autumn, mostly
to address integration issues as NRK’s project team worked on the front end.

Unfortunately, detailed and reliable records of the time used for different
parts of the project are not available.

64

Chapter 6

Conclusion

This chapter suggests future directions for Pycast and Tista, and concludes
with reflecting on the future of streaming and multimedia on the Internet.

6.1 Further plans for Pycast

As previously mentioned the current version of Pycast has a number of short-
comings, and it is quite clear that the application needs to be restructured and
cleaned up.

The main priority is to rid Pycast of the unpredictability that currently
plagues it. Specifically, an error in a node of a data distribution tree should
not be allowed to create problems upstream (see section 4.2.6).

Another important short-term improvement is better support for RTP mul-
ticasting. The current RTP module is prone to freezing, and also creates streams
that are incompatible with the QuickTime and Real media player (and proba-
bly also others).

When time permits we plan to publish Pycast on SourceForge as well. In
the longer term we hope to implement the changes described in section 4.2.7.

6.2 Further plans for Tista

We are currently preparing to publish Tista as a SourceForge [80] project and
under the GNU General Public License. The version in question is almost iden-
tical to the one described in this paper, but with some changes made to the con-
figuration file format (using Python code instead of XML) and without some
of the auxilliary scripts specific to its use at the NRK. Also, the notation for
extracting audio clips has been modified slightly. Information will be posted at
http://tista.sourceforge.net/ .

It is likely that Tista soon will be used as part of our Stortinget når det pas-
ser [81] project, which offers video recordings from sessions of the Norwegian
Parliament to the public on demand. Tista in its current form would be useful
for publishing an audio version for portable MP3 players, including the option
of skipping to individual speakers. We later hope to extend Tista with similar
functionality for MPEG-2 (and possibly also MPEG-4) video.

65

Also, a group of B.Sc. students (Erik Bergh, Karl Vegard Hansen and Chris-
tian Olszewski) are working on integrating Tista with MediaWiki [82] to create
a system for collaborative annotation of media streams.

Finally, it seems like Tista might be very well suited for the emerging field
of podcasting [83]: Podcast creators could then easily offer different sections
of their shows, and traditional radio stations could use it to easily extract pro-
grammes from their continuous streams.

6.3 The future of multimedia on the Internet

These are interesting times for multimedia material on the Web and the In-
ternet in general. On the one hand, the established producers, distributors and
owners of various media seek to protect and expand their business models and
influence.

On the other new technologies and techniques for creating, distributing and
using documents, news, blogs, reference works, movies, music, animation and
a myriad of other media, are spreading rapidly among the citizens of the Net.
Indeed, this process seems to be accelerating.

The interests of the new and the old frequently collide, especially when
copyright and other privileges are involved. As a result important precedents
are currently being set, and will strongly influence our future both online and
offline.

6.3.1 Observations

Before proceeding to reflecting a bit on the future, I will make a few observa-
tions about the state of the Internet, streaming, and relevant technological and
social developments.

• There is a growing public understanding that open standards are nec-
essary (or at least very useful) for electronic exchange of many kinds
of information, both for compatibility and equality of access. For in-
stance The Norwegian Board of Technology specifically recommends us-
ing open standards for streaming of public TV and radio channels [84].
(The report in question was accompanied by a summary in English[85].)

• During the last couple of years the number of people who publish infor-
mation online seems to have grown dramatically, thanks especially to the
phenomenon of blogging. Blogging lowers the bar for participation, and
programmable interfaces and APIs like RSS [86], most of which are open,
enable powerful network effects.

• Load-distributing peer-to-peer transport protocols like BitTorrent [33]
make it possible to publish large files (typically music and movies) in
a way that scales well up to hundreds or thousands of recipients. (As
always, there is a risk that such technologies can be abused for unau-
thorised copying; apprehension about the character of content does not
detract from the efficiency or success of that technology.)

66

• An increasing number of diverse computer devices are expected to com-
municate with each other with a minimum of configuration, user involve-
ment and fuss. This requires standardisation (and support for trans-
coding material between formats). Some examples: PCs, laptops, mo-
bile phones, MP3 players, still cameras, video cameras, game consoles
(portable and stationary), DVD players, CD players, TVs, personal video
recorders (PVRs), set-top boxes, PDAs, toys, appliances (refrigerators,
microwave ovens, robot vacuum cleaners etc.), cars.

• Technologies such as PVRs, podcasting and on-demand downloading
mean that TV and radio programmes can be enjoyed whenever and wher-
ever it is convenient.

• Many publishers and content owners understandably fear unauthorised
copying and are adopting various digital rights management (DRM)
schemes in an attempt to restrict the ways customers can use the material.
DRM is sometimes also used to impose other limitations, for instance
blocking the playback of DVD disks that have been bought on another
continent, or hindering blind users in feeding the contents of electronic
books to speech synthesisers.

6.3.2 Downloading vs. streaming

I would venture to suggest this:

In the near future most TV programmes (and similar content) will be downloaded and
watched (or listened to) at the users’ leisure, not streamed or broadcast in real time1.
One notable exception is breaking news, where real-time feeds are valuable.

This development is likely for several reasons:

• Downloading increases predictability for receivers, since the process is
far less sensitive to bandwidth fluctuations and other network problems.

• Downloaded material can more easily be moved or copied to other de-
vices, such as MP3 players, mobile phones and portable video players.

• Files can be downloaded in the background and played back later, for
instance making it possible to distribute high-quality movies over slow
network connections.

• The Internet’s best-effort nature [87] works very well for copying files,
but not as well for streaming. (It can pretty much guarantee that a packet
of data will be delivered, but not that it will happen quickly enough to fit
in its proper place in a stream while it is being played back.)

Unless one single company can achieve domination in the diverse set of
markets involved, hassle-free compatibility and interoperability between dif-
ferent devices and software applications will require open standards.

1Downloading in this context also includes progressive downloading, where data is transported
in a non-lossy way (e.g. using HTTP) and may be stored locally while being played back.

67

6.4 Final remarks

Tista and Pycast could work well as the core modules of a comprehensive, ro-
bust and open broadcast streaming system comprising all manner of multime-
dia data. Given a comprehensive and well designed outline of such a system,
its future development might very well benefit from contributions as part of
an open source development process.

68

Appendix A

Abbreviations

AAC Advanced Audio Coding (audio codec)

ARPA Advanced Research Projects Agency (former name of US military re-
search organisation)

ASM Any-Source Multicast (multicast model)

ATA Advanced Technology Attachment (storage device interface)

ATM Asynchronous Transfer Mode (low-level network protocol)

AV Audio/Video

BBC British Broadcasting Corporation

BOS Beginning Of Stream (Ogg data structure)

BSD Berkeley Software Distribution (software license)

CBR Constant Bitrate (audio or video coding)

CC CSRC Count (RTP)

CD Compact Disc (storage medium)

CGI Common Gateway Interface (Web programming)

CPU Central Processing Unit (computer component)

CSRC Contributing Source Identifiers (RTP)

DAB Digital Audio Broadcast (digital radio standard)

DHCP Dynamic Host Configuration Protocol (network protocol)

DRM Digital Rights Management

DSS Darwin Streaming Server (streaming server)

DVB Digital Video Broadcasting (digital TV standard)

DVD Digital Versatile Disc (storage medium)

69

FD File Descriptor (file object identifier)

FIFO First In, First Out (filesystem construct)

FLAC Free Lossless Audio Codec (audio codec)

GNU GNU’s Not Unix (organisation)

GUI Graphical User Interface

HDTV High-Definition Television (digital TV standard)

HTML HyperText Markup Language (markup language)

HTTP HyperText Transfer Protocol (network protocol)

IDE Integrated Drive Electronics (see ATA)

IETF Internet Engineering Task Force (organisation)

IM Instant Messaging (class of computer programmes)

IP Internet Protocol (network protocol)

ISO International Organization for Standardization (organisation)

IT Information Technology

ITU International Telecommunication Union (organisation)

M3U (playlist format)

MP1 MPEG Audio Layer 1 (audio codec)

MP2 MPEG Audio Layer 2 (audio codec)

MP3 MPEG Audio Layer 3 (audio codec)

MP4 MPEG-4 Part 14 (file format)

MPEG Moving Picture Experts Group (working group)

NASA National Aeronautics and Space Administration (organisation)

NAT Network Address Translation (networking technique)

NFS Network File System (network protocol)

NLS online system (computer system)

NOK Norwegian Kroner (currency)

NRK Norwegian Broadcasting Corporation (Norsk rikskringkasting, organisa-
tion)

NSC Network Secure Communications (ARPA project)

NTP Network Time Protocol (network protocol)

NVP Network Voice Protocol (network protocol)

70

NVP-II Network Voice Protocol II (network protocol)

OS Operating System

OSI Open Systems Interconnection Reference Model (network model)

P1 (Norwegian radio channel)

P2 (Norwegian radio channel)

P2P Peer-to-Peer (network)

PC Personal Computer

PCI Peripheral Component Interconnect (computer bus)

PCM Pulse-Code Modulation (audio sampling method)

PDA Personal Digital Assistant (handheld computer)

PES Packetised Elementary Stream (MPEG)

PS Programme Stream (MPEG)

PVP Packet Video Protocol (network protocol)

PVR Personal Video Recorder

RAID Redundant Array of Inexpensive Disks

RFC Request for Comments

RSS (standard for Web syndication)

RTCP Real-Time Control Protocol (network protocol)

RTP Real-Time Transport Protocol (network protocol)

RTSP Real-Time Streaming Protocol (network protocol)

SAP Session Announcement Protocol (network protocol)

SCSI Small Computer System Interface (storage and peripheral device inter-
face)

SDP Session Description Protocol (network protocol)

SQL Structured Query Language (database language)

SSM Source-Specific Multicast (multicast model)

SSRC Synchronisation Source (RTP)

TCP Transmission Control Protocol (network protocol)

TFTP Trivial File Transfer Protocol (network protocol)

TS Transport stream (MPEG)

TV Television

71

UDP User Datagram Protocol (network protocol)

UML Unified Modeling Language (data modeling notation)

URI Uniform Resource Identifier

UTC Coordinated Universal Time

VBR Variable Bitrate (audio or video coding)

VLC VLC Media Player (media player application)

WMA Windows Media Audio (codec)

WMP Windows Media PLayer (media player application)

XML Extensible Markup Language (markup language)

XMT Extensible MPEG-4 Textual Format (file format)

72

Appendix B

Source code

B.1 Obtaining the source code

The source code of Tista and Pycast will be made available at http://www.
ia.hiof.no/˜audunv/thesis/source/ . Please follow the download in-
structions found there.

Some copies of this thesis will also include a CD-ROM with the same con-
tents as the URL above. Instructions will be avaiable in the README.txt file
of the root directory.

Please note that the source code will not necessarily work as-is, since it is
likely to represent snapshots of production servers.

B.2 Newer versions

We are planning to publish newer versions of Tista and Pycast at http://
tista.sourceforge.net and http://pycast.sourceforge.net , respec-
tively.

73

Appendix C

Structure of Tista’s metadata
database

C.1 About the database

Tista uses a very simple database to store programme metadata, based on the
table below. Each record stores information about one programme, broadcast
in one specific channel:

channel is the ID of the channel in which the programme was broadcast, e.g.
nrk-p1 or nrk-alltid-klassisk .

start is the start time of the programme (local time).

end see start.

title is the name of the programme.

abstract is a short description of the programme. This is what e.g. appears a
box-out in a newspaper’s TV guide.

longDescr is rarely used, but was supposed to hold a more thorough descrip-
tion.

avail is an integer representing a bit-field that holds information about the
availability of versions of the programme in different bitrates and for-
mats. This approach (as opposed to using a second table and a join oper-
ation) yields very efficient queries, at the expense of clarity.

The following convention is used to map the availability of a format to a
numerical value:

• MP3, 24 kbit/s; if available: 1

• MP3, 56 kbit/s; if available: 2

• MP3, 128 kbit/s; if available: 4

74

For instance, if the 24-kbit/s and 128-kbit/s versions are available, the
field’s value would be 5.

An alternative solution may be to use one of MySQL’s built-in types for
storing lists.

The primary key is the combination of channel and start.

C.2 The database structure

This is the SQL statement necessary to create the database’s only table:

-- MySQL dump 8.22
--
-- Host: localhost Database: rod3
--- ------
-- Server version 3.23.54

--
-- Table structure for table ’programs’
--

CREATE TABLE programs (
channel varchar(32) NOT NULL default ’’,
start datetime NOT NULL default ’0000-00-00 00:00:00’,
end datetime NOT NULL default ’0000-00-00 00:00:00’,
title varchar(64) NOT NULL default ’’,
abstract text,
longDescr text,
avail int(10) unsigned NOT NULL default ’0’,
PRIMARY KEY (channel,start)

) TYPE=MyISAM;

75

Appendix D

Sample Tista configuration
file

<?xml version="1.0" encoding="iso-8859-1"?>
<config>

<locations>
<path>/mnt/rod/disk01</path>

</locations>

<server>
<maxclients>600</maxclients>
<port>8000</port>
<address>malxrod01.nrk.no</address>

</server>

<limits>
<maxage>21</maxage>

</limits>

<database>
<name>rod3</name>
<host>160.68.118.48</host>

</database>

<logs>
<debug>/usr/local/tista/log/tista/debug_log</debug>
<http>/usr/local/tista/log/tista/http_log</http>
<tista>/usr/local/tista/log/tista/tista_log</tista>

</logs>

<channels>
<channel>

<id>nrk-p1</id>
<name>NRK P1</name>
<stream>

76

<url>http://radio.hiof.no:8000/nrk-p1-128</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>128</bitrate>

</stream>
<stream>

<url>http://radio.hiof.no:8000/nrk-p1-56</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>56</bitrate>

</stream>
<stream>

<url>http://radio.hiof.no:8000/nrk-p1-24</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>24</bitrate>

</stream>
</channel>

<channel>
<id>nrk-p2</id>
<name>NRK P2</name>
<stream>

<url>http://radio.hiof.no:8000/nrk-p2-128</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>128</bitrate>

</stream>
<stream>

<url>http://radio.hiof.no:8000/nrk-p2-56</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>56</bitrate>

</stream>
<stream>

<url>http://radio.hiof.no:8000/nrk-p2-24</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>24</bitrate>

</stream>
</channel>

<channel>
<id>nrk-petre</id>
<name>NRK Petre</name>
<stream>

<url>http://radio.hiof.no:8000/nrk-petre-128</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>128</bitrate>

77

</stream>
<stream>

<url>http://radio.hiof.no:8000/nrk-petre-56</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>56</bitrate>

</stream>
<stream>

<url>http://radio.hiof.no:8000/nrk-petre-24</url>
<content-type>audio/mpeg</content-type>
<ext>mp3</ext>
<bitrate>24</bitrate>

</stream>
</channel>

</channels>
</config>

78

Appendix E

Sample Tista search result

Note: The code below has been slightly edited in order to fit on the page.

<?xml version="1.0" encoding="iso-8859-1"?>
<programs>

<program>
<channel>nrk-p1</channel>
<start>2005-03-25T02:00:00</start>
<end>2005-03-25T02:03:10</end>
<title>Dagsnytt</title>
<abstract></abstract>
<longDescription></longDescription>
<urls>

<url>
http://malxrod01.nrk.no/services/public/make_m3u?\
channel=nrk-p1&start=2005-03-25T02%3A00%3A00\
&end=2005-03-25T02%3A03%3A10&bitrate=128

</url>
<url>

http://malxrod01.nrk.no/services/public/make_m3u?\
channel=nrk-p1&start=2005-03-25T02%3A00%3A00\
&end=2005-03-25T02%3A03%3A10&bitrate=56

</url>
<url>

http://malxrod01.nrk.no/services/public/make_m3u?\
channel=nrk-p1&start=2005-03-25T02%3A00%3A00\
&end=2005-03-25T02%3A03%3A10&bitrate=24

</url>
</urls>

</program>
</programs>

79

Appendix F

Sample Tista log file

F.1 About the log format

F.1.1 Structure

Each line reflects one event, and contains two or more fields separated by space
characters:

• Field 1: Timestamp (mandatory): Specifies when the event occurred.

• Field 2: Event class (mandatory): Specifies the type of event; see below.

• Field 3–: Class-dependent information: Describes the event.

CONN, DISC and DEBUG events are followed by a connection ID (CID)
which identifies the connection that caused the event. The CID is taken from a
counter that begins at zero every time Tista is started or restarted, and increases
by one each time a client connects. When combined with the time of the last
Tista start or restart, it uniquely identifies a connection.

F.1.2 Event classes

Events belong to one of the following classes:

START Tista has started (or restarted). The CID is reset to zero.

CONN A client has connected. Field three is the client’s CID. Field four in-
cludes the channel, start time, end time, format and bitrate of the re-
quested programme, as well as name of the requesting host. The sub-
field with the value None is currently not used.

DISC A client has disconnected. Field three is the CID; the rest of the record
specifies how long the client was connected, and the number of bytes
transmitted.

DEBUG Debug information. Field three is the CID; the rest of the record de-
scribes the event. Logging of debug information can be turned on or off
in Tista’s configuration file.

80

ERROR An error record describes an unexpected event that affects Tista glob-
ally. The rest of the line describes the error.

F.2 Example

This is a random extract from an actual log file in Tista’s custom format (in-
cluding debug information). All host names have been altered to protect users’
privacy, yielding names according to the pattern xxxxxxxx.example.com ,
where xxxxxxxx is a string that identifies each host uniquely within the sam-
ple.

...
2003-11-05T10:45:34 ERROR Error connecting to database. N o metadata will be used.
...
2003-11-20T10:46:57 START
...
2003-12-01T10:00:52 CONN 8612 nrk-petre,2003-11-19T20: 03:00,2003-11-19T22:00:10,mp3,128,None,9ab02b83.exa mple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:00:52 DEBUG 8612 Opening /mnt/rod/disk01/ nrk-petre/2003/11/19/nrk-petre-2003-11-19-19-128.mp 3
2003-12-01T10:00:52 DEBUG 8602 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:00:52 DISC 8602 Disconnected (00:23:20, 19 380984 bytes)
2003-12-01T10:00:56 DEBUG 8612 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:00:56 DISC 8612 Disconnected (00:00:04, 13 1072 bytes)
2003-12-01T10:00:57 CONN 8613 nrk-petre,2003-11-12T20: 03:00,2003-11-12T22:00:10,mp3,128,None,9ab02b83.exa mple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:00:57 DEBUG 8613 Opening /mnt/rod/disk01/ nrk-petre/2003/11/12/nrk-petre-2003-11-12-19-128.mp 3
2003-12-01T10:02:29 CONN 8614 nrk-petre,2003-11-27T17: 00:00,2003-11-27T18:00:10,mp3,56,None,660c4347.exam ple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:02:29 DEBUG 8614 Opening /mnt/rod/disk01/ nrk-petre/2003/11/27/nrk-petre-2003-11-27-16-056.mp 3
2003-12-01T10:03:04 CONN 8615 nrk-petre,2003-11-26T17: 00:00,2003-11-26T18:00:10,mp3,56,None,660c4347.exam ple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:03:04 DEBUG 8615 Opening /mnt/rod/disk01/ nrk-petre/2003/11/26/nrk-petre-2003-11-26-16-056.mp 3
2003-12-01T10:03:05 DEBUG 8614 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:03:05 DISC 8614 Disconnected (00:00:36, 50 0856 bytes)
2003-12-01T10:03:05 DEBUG 8614 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:03:25 CONN 8616 nrk-p2,2003-11-15T15:03: 00,2003-11-15T15:40:10,mp3,56,None,90ae945f.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:03:25 DEBUG 8616 Opening /mnt/rod/disk01/ nrk-p2/2003/11/15/nrk-p2-2003-11-15-14-056.mp3
2003-12-01T10:03:27 DEBUG 8600 Opening /mnt/rod/disk01/ nrk-petre/2003/11/28/nrk-petre-2003-11-28-22-128.mp 3
2003-12-01T10:04:17 CONN 8617 nrk-p2,2003-11-29T15:03: 00,2003-11-29T15:40:10,mp3,56,None,90ae945f.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:04:17 DEBUG 8617 Opening /mnt/rod/disk01/ nrk-p2/2003/11/29/nrk-p2-2003-11-29-14-056.mp3
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:04:18 DISC 8616 Disconnected (00:00:52, 72 9880 bytes)
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:04:18 DEBUG 8616 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:05:02 DEBUG 8615 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:05:02 DISC 8615 Disconnected (00:01:58, 16 47384 bytes)
2003-12-01T10:05:18 DEBUG 8606 Finished - end reached
2003-12-01T10:05:18 DISC 8606 Disconnected (00:18:45, 35 680000 bytes)
2003-12-01T10:05:18 DEBUG 8606 Finished - error calling cl ient.Pump: I/O operation on closed file
2003-12-01T10:05:30 CONN 8618 nrk-p2,2003-11-29T15:03: 00,2003-11-29T15:40:10,mp3,128,None,e103c534.exampl e.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:05:30 DEBUG 8618 Opening /mnt/rod/disk01/ nrk-p2/2003/11/29/nrk-p2-2003-11-29-14-128.mp3
2003-12-01T10:05:52 DEBUG 8601 Opening /mnt/rod/disk01/ nrk-petre/2003/11/30/nrk-petre-2003-11-30-09-056.mp 3
2003-12-01T10:06:07 CONN 8619 nrk-p2,2003-11-28T18:03: 00,2003-11-28T18:58:10,mp3,56,None,6bea92fe.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:06:07 DEBUG 8619 Opening /mnt/rod/disk01/ nrk-p2/2003/11/28/nrk-p2-2003-11-28-17-056.mp3
2003-12-01T10:06:07 DEBUG 8599 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:06:07 DISC 8599 Disconnected (00:36:33, 69 720912 bytes)
2003-12-01T10:06:49 DEBUG 8619 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:06:49 DISC 8619 Disconnected (00:00:42, 58 5608 bytes)
2003-12-01T10:06:54 DEBUG 8603 Opening /mnt/rod/disk01/ nrk-petre/2003/11/29/nrk-petre-2003-11-29-12-056.mp 3
2003-12-01T10:06:55 CONN 8620 nrk-p1,2003-11-28T15:05: 00,2003-11-28T15:59:10,mp3,56,None,6bea92fe.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:06:55 DEBUG 8620 Opening /mnt/rod/disk01/ nrk-p1/2003/11/28/nrk-p1-2003-11-28-14-056.mp3
2003-12-01T10:06:59 DEBUG 8603 Finished - end reached
2003-12-01T10:06:59 DISC 8603 Disconnected (00:28:47, 24 012688 bytes)
2003-12-01T10:08:44 CONN 8621 nrk-p2,2003-11-30T09:30: 00,2003-11-30T09:56:09,mp3,128,None,a51da6da.exampl e.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:08:44 DEBUG 8621 Opening /mnt/rod/disk01/ nrk-p2/2003/11/30/nrk-p2-2003-11-30-08-128.mp3
2003-12-01T10:11:14 DEBUG 8613 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:11:14 DISC 8613 Disconnected (00:10:17, 19 658248 bytes)
2003-12-01T10:11:14 DEBUG 8613 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:12:13 DEBUG 8605 Opening /mnt/rod/disk01/ nrk-petre/2003/11/30/nrk-petre-2003-11-30-08-128.mp 3
2003-12-01T10:12:18 DEBUG 8605 Finished - end reached
2003-12-01T10:12:18 DISC 8605 Disconnected (00:28:39, 54 886144 bytes)
2003-12-01T10:12:18 DEBUG 8605 Finished - error calling cl ient.Pump: I/O operation on closed file
2003-12-01T10:12:18 DEBUG 8605 Finished - error calling cl ient.Pump: I/O operation on closed file
2003-12-01T10:14:28 CONN 8622 nrk-p2,2003-11-30T16:03: 00,2003-11-30T16:30:10,mp3,56,None,88a2984b.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:14:28 DEBUG 8622 Opening /mnt/rod/disk01/ nrk-p2/2003/11/30/nrk-p2-2003-11-30-15-056.mp3
2003-12-01T10:14:33 DEBUG 8622 Finished - error sending to client ((104, ’Connection reset by peer’))

81

2003-12-01T10:14:33 DISC 8622 Disconnected (00:00:04, 68 475 bytes)
2003-12-01T10:14:33 DEBUG 8622 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:16:54 CONN 8623 nrk-p1,2003-11-29T02:03: 00,2003-11-29T03:57:10,mp3,128,None,3a4ace86.exampl e.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:16:54 DEBUG 8623 Opening /mnt/rod/disk01/ nrk-p1/2003/11/29/nrk-p1-2003-11-29-01-128.mp3
2003-12-01T10:17:49 DEBUG 8607 Opening /mnt/rod/disk01/ nrk-petre/2003/11/29/nrk-petre-2003-11-29-12-056.mp 3
2003-12-01T10:17:54 DEBUG 8607 Finished - end reached
2003-12-01T10:17:54 DISC 8607 Disconnected (00:28:50, 24 012688 bytes)
2003-12-01T10:18:39 DEBUG 8623 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:18:39 DISC 8623 Disconnected (00:01:45, 33 56180 bytes)
2003-12-01T10:19:12 CONN 8624 nrk-p1,2003-11-27T22:05: 00,2003-11-27T23:59:10,mp3,128,None,3a4ace86.exampl e.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:19:12 DEBUG 8624 Opening /mnt/rod/disk01/ nrk-p1/2003/11/27/nrk-p1-2003-11-27-21-128.mp3
2003-12-01T10:19:43 DEBUG 8624 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:19:43 DISC 8624 Disconnected (00:00:31, 97 4204 bytes)
2003-12-01T10:19:43 DEBUG 8624 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:19:43 CONN 8625 nrk-p1,2003-11-22T02:03: 00,2003-11-22T03:57:10,mp3,128,None,3a4ace86.exampl e.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:19:43 DEBUG 8625 Opening /mnt/rod/disk01/ nrk-p1/2003/11/22/nrk-p1-2003-11-22-01-128.mp3
2003-12-01T10:21:03 CONN 8626 nrk-petre,2003-11-30T12: 03:00,2003-11-30T13:00:10,mp3,128,None,845fe1a1.exa mple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:21:03 DEBUG 8626 Opening /mnt/rod/disk01/ nrk-petre/2003/11/30/nrk-petre-2003-11-30-11-128.mp 3
2003-12-01T10:21:03 CONN 8627 nrk-petre,2003-11-30T12: 03:00,2003-11-30T13:00:10,mp3,128,None,845fe1a1.exa mple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:21:03 DEBUG 8627 Opening /mnt/rod/disk01/ nrk-petre/2003/11/30/nrk-petre-2003-11-30-11-128.mp 3
2003-12-01T10:21:03 DEBUG 8626 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:21:03 DISC 8626 Disconnected (00:00:00, 11 680 bytes)
2003-12-01T10:21:03 DEBUG 8626 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:21:56 DEBUG 8621 Finished - end reached
2003-12-01T10:21:56 DISC 8621 Disconnected (00:13:12, 25 104000 bytes)
2003-12-01T10:22:26 CONN 8628 nrk-p2,2003-11-30T13:03: 00,2003-11-30T13:30:10,mp3,56,None,9fc50fa9.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:22:26 DEBUG 8628 Opening /mnt/rod/disk01/ nrk-p2/2003/11/30/nrk-p2-2003-11-30-12-056.mp3
2003-12-01T10:22:50 CONN 8629 nrk-p2,2003-11-30T08:30: 00,2003-11-30T09:00:10,mp3,128,None,9e3782f7.exampl e.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:22:50 DEBUG 8629 Opening /mnt/rod/disk01/ nrk-p2/2003/11/30/nrk-p2-2003-11-30-07-128.mp3
2003-12-01T10:22:59 DEBUG 8617 Finished - end reached
2003-12-01T10:22:59 DISC 8617 Disconnected (00:18:41, 15 610000 bytes)
2003-12-01T10:23:48 CONN 8630 nrk-p1,2003-11-29T17:03: 00,2003-11-29T18:00:10,mp3,56,None,3842567a.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:23:48 DEBUG 8630 Opening /mnt/rod/disk01/ nrk-p1/2003/11/29/nrk-p1-2003-11-29-16-056.mp3
2003-12-01T10:24:11 DEBUG 8618 Finished - end reached
2003-12-01T10:24:11 DISC 8618 Disconnected (00:18:41, 35 680000 bytes)
2003-12-01T10:30:44 DEBUG 8629 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:30:44 DISC 8629 Disconnected (00:07:54, 15 059008 bytes)
2003-12-01T10:31:19 DEBUG 8620 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:31:19 DISC 8620 Disconnected (00:24:24, 20 357040 bytes)
2003-12-01T10:31:23 CONN 8631 nrk-p1,2003-11-28T15:05: 00,2003-11-28T15:59:10,mp3,56,None,6bea92fe.example .com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:31:23 DEBUG 8631 Opening /mnt/rod/disk01/ nrk-p1/2003/11/28/nrk-p1-2003-11-28-14-056.mp3
2003-12-01T10:33:10 CONN 8632 nrk-petre,2003-11-28T19: 00:00,2003-11-28T21:00:10,mp3,56,None,5f959aa3.exam ple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:33:10 DEBUG 8632 Opening /mnt/rod/disk01/ nrk-petre/2003/11/28/nrk-petre-2003-11-28-18-056.mp 3
2003-12-01T10:33:20 CONN 8633 nrk-p1,2003-11-27T02:03: 00,2003-11-27T03:57:10,mp3,56,None,002307ea.example .com,\

None,Nullsoft Winamp3 version 3.0d build 488
2003-12-01T10:33:20 DEBUG 8633 Opening /mnt/rod/disk01/ nrk-p1/2003/11/27/nrk-p1-2003-11-27-01-056.mp3
2003-12-01T10:33:22 CONN 8634 nrk-p1,2003-11-27T02:03: 00,2003-11-27T03:57:10,mp3,56,None,002307ea.example .com,\

None,Nullsoft Winamp3 version 3.0d build 488
2003-12-01T10:33:22 DEBUG 8634 Opening /mnt/rod/disk01/ nrk-p1/2003/11/27/nrk-p1-2003-11-27-01-056.mp3
2003-12-01T10:33:23 DEBUG 8633 Finished - error sending to client ((32, ’Broken pipe’))
2003-12-01T10:33:23 DISC 8633 Disconnected (00:00:02, 37 960 bytes)
2003-12-01T10:33:23 DEBUG 8633 Finished - error sending to client ((9, ’Bad file descriptor’))
2003-12-01T10:33:43 DEBUG 8600 Opening /mnt/rod/disk01/ nrk-petre/2003/11/28/nrk-petre-2003-11-28-23-128.mp 3
2003-12-01T10:33:55 DEBUG 8632 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:33:55 DISC 8632 Disconnected (00:00:45, 62 9408 bytes)
2003-12-01T10:34:09 CONN 8635 nrk-petre,2003-11-30T09: 03:00,2003-11-30T11:00:10,mp3,56,None,5f959aa3.exam ple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:34:09 DEBUG 8635 Opening /mnt/rod/disk01/ nrk-petre/2003/11/30/nrk-petre-2003-11-30-08-056.mp 3
2003-12-01T10:34:44 CONN 8636 nrk-petre,2003-11-30T09: 03:00,2003-11-30T11:00:10,mp3,128,None,6f218764.exa mple.com,\

None,NSPlayer/9.0.0.2980 WMFSDK/9.0
2003-12-01T10:34:44 DEBUG 8636 Opening /mnt/rod/disk01/ nrk-petre/2003/11/30/nrk-petre-2003-11-30-08-128.mp 3
2003-12-01T10:34:48 DEBUG 8635 Finished - error sending to client ((104, ’Connection reset by peer’))
2003-12-01T10:34:48 DISC 8635 Disconnected (00:00:39, 54 1808 bytes)
...

82

Appendix G

Images of HiØ’s current
streaming system

This appendix contains screenshots of web pages related to HiØ’s current radio
streaming system, as well as pictures of its various hardware components.

Figure G.1: Front page (http://media.hiof.no/)

83

Figure G.2: Radio streaming (http://media.hiof.no/radio/)

Figure G.3: Technical details (http://media.hiof.no/scripts/stream_
details.php)

84

Figure G.4: Information in English (http://media.hiof.no/english/)

Figure G.5: News and service announcements (http://media.hiof.no/
news/)

85

Figure G.6: School of Computer Science building

Figure G.7: Satellite antennas on the roof. The nearest lower one is used for data
reception. The nearest one on the top is used for tuning and testing.

86

Figure G.8: Eight-way antenna head

Figure G.9: DAB antenna, mounted on south wall

87

Figure G.10: Server room

Figure G.11: Primary Pycast encoder (contains DVB card)

88

Figure G.12: DVB interface, primary encoder

Figure G.13: Secondary Pycast encoders (diskless cluster nodes)

89

Figure G.14: NRK P1 encoder

Figure G.15: Sound card, NRK P1 encoder

90

Figure G.16: DAB tuner (feeds NRK P1 encoder)

Figure G.17: Rear of DAB tuner

91

Bibliography

[1] Icecast. http://www.icecast.org/ .

[2] VLC media player. http://videolan.org/vlc/ .

[3] QuickTime. http://www.apple.com/quicktime/ .

[4] Windows Media. http://www.microsoft.com/windows/
windowsmedia/default.aspx .

[5] D. C. Engelbart and W. K. English. A research center for augment-
ing human intellect. In AFIPS Conference Proceedings of the 1968 Fall
Joint Computer Conference, pages 395–410, December 1968. Available
online at http://bootstrap.org/augdocs/friedewald030402/
researchcenter1968/ResearchCenter1968.html .

[6] Wikipedia, the free encyclopedia. NLS (computer system). http://
en.wikipedia.org/wiki/NLS_(computer_system) , revised 20:33,
25 March, March 2005.

[7] D. Cohen. Specifications for the Network Voice Protocol (NVP). RFC 741,
January 1976.

[8] D. Cohen. A Network Voice Protocol NVP-II. USC/Information Sciences
Institute, 1981.

[9] E. Cole. PVP - A Packet Video Protocol. USC/Information Sciences Institute,
1981.

[10] S. Casner and S. Deering. First IETF Internet audiocast. ACM SIGCOMM
Computer Communications Review, 22(3), July 1992.

[11] S. Deering. Host extensions for IP multicasting. RFC 1112, August 1989.

[12] K. Almeroth. Evolution of multicast: From the MBone to inter-domain
multicast to Internet2 deployment. IEEE Networks, January/February
2000.

[13] NASA TV. http://www.nasa.gov/multimedia/nasatv/ .

[14] C. Diot K. Almeroth, S. Bhattacharyya. Challenges of integrating ASM
and SSM ip multicast protocol architectures. In International Workshop
on Digital Communications: Evolutionary Trends of the Internet (IWDC’01),
September 2001.

92

[15] S. Bhattacharyya. An overview of source-specific multicast (SSM). RFC
3569, July 2003.

[16] T. Dorcey. CU-SeeMe desktop videoconferencing software. Connexions,
9(3), March 1995. Available online at http://myhome.hanafos.com/
˜soonjp/dorcey.html .

[17] M. Sattler. Internet TV With CU-SeeMe. Sams, September 1995. A pre-print
version is available online at http://www.geektimes.com/michael/
CU-SeeMe/internetTVwithCUSeeMe/ .

[18] H. Kise Jr. Sanntids multimediakommunikasjon i uninett. HØit, 1996.

[19] B. Ludvigsen. A home on the WEB. In First International Conference on the
World-Wide Web, May 1994.

[20] ivisit. http://www.ivisit.com/ .

[21] José Alvear. Guide to Streaming Multimedia. John Wiley & Sons, April 1998.

[22] Wikipedia, the free encyclopedia. RealNetworks. http://en.
wikipedia.org/wiki/RealNetworks , revised 20:02, 27 April, April
2005.

[23] Microsoft wins industry support for windows media technologies
4.0. http://web.archive.org/web/19991205184109/http:
//www.microsoft.com/presspass/press/1999/Apr99/
Streamsupppr.htm , April 1999.

[24] Apple releases quicktime 4 public beta with internet stream-
ing. http://web.archive.org/web/19991117114516/http:
//apple.com/pr/library/1999/apr/19qt4beta.html , April
1999.

[25] Winamp. http://winamp.com/ .

[26] Shoutcast. http://www.shoutcast.com/ .

[27] New web radio technology aims for masses. http://news.com.com/
2100-1023-219634.html , December 1998.

[28] Rob Brunner. Radio daze. Entertainment Weekly, page 102, April 1999.

[29] Ogg Vorbis streams from Virgin Radio. http://www.virginradio.
co.uk/thestation/listen/ogg.html .

[30] NRK.no — lyd. http://www.nrk.no/lyd/ .

[31] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification.
RFC 2460, December 1998.

[32] Wikipedia, the free encyclopedia. Network address translation. http:
//en.wikipedia.org/wiki/Network_address_translation , re-
vised 23:53, 6 May, May 2005.

[33] BitTorrent. http://www.bittorrent.com/ .

93

[34] BitTorrent. http://web.archive.org/web/20010812032735/
http://bitconjurer.org/BitTorrent/ . Archived version of site,
summer 2001.

[35] Norwegians try out tv on mobiles. http://news.bbc.co.uk/2/hi/
technology/3829343.stm .

[36] Ices. http://www.icecast.org/ices.php .

[37] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG Video
Compression Standard. Chapman & Hall, 1996.

[38] K. Brandenburg. MP3 and AAC explained. In The Proceedings of the AES
17th International Conference: High-Quality Audio Coding. Fraunhofer Insti-
tute for Integrated Circuits FhG-IIS A, 1999.

[39] F. Pereira and T. Ebrahimi, editors. The MPEG-4 Book. Prentice Hall PTR,
2002.

[40] J. Moffitt. Ogg Vorbis—open, free audio—set your media free. Linux
Journal, 2001.

[41] Wikipedia, the free encyclopedia. Vorbis. http://en.wikipedia.
org/wiki/Vorbis , revised 8 February, 2005.

[42] Wikipedia, the free encyclopedia. Ogg. http://en.wikipedia.org/
wiki/Ogg , revised 8 May, 2005.

[43] Terry Pratchett. Small Gods (A Discworld Novel). 1992.

[44] S. Pfeiffer. The Ogg encapsulation format version 0. RFC 3533, May 2003.

[45] RealNetworks. http://www.realnetworks.com/ .

[46] Helix community. https://helixcommunity.org/ .

[47] BBC R&D — Dirac. http://www.bbc.co.uk/rd/projects/dirac/ .

[48] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol — HTTP/1.1. RFC 2616, June
1999.

[49] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport
protocol for real-time applications. RFC 3550, July 2003.

[50] M. Handley, C. Perkins, and E. Whelan. Session announcement protocol.
RFC 2974, October 2000.

[51] H. Schulzrinne. RTP profile for audio and video conferences with minimal
control. RFC 1890, January 1996.

[52] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Ad-
dress allocation for private internets. RFC 1918, February 1996.

[53] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol
(RTSP). RFC 2326, April 1998.

94

[54] M. Handley and V. Jacobson. SDP: Session description protocol. RFC 2327,
April 1998.

[55] Audioactive. http://www.audioactive.com/ .

[56] openMosix. http://openmosix.sourceforge.net/ .

[57] LinuxTV project. http://linuxtv.org/ .

[58] Sound eXchange. http://sox.sourceforge.net/ .

[59] The LAME project. http://lame.sourceforge.net/ .

[60] OggEnc — command line encoder for the Ogg Vorbis format. http://
directory.fsf.org/audio/ogg/OggEnc.html .

[61] dvbstream. http://www.linuxstb.org/dvbstream/ .

[62] R. Droms. Dynamic host configuration protocol. RFC 2131, March 1997.

[63] K. Sollins. The TFTP protocol (revision 2). RFC 1350, July 1992.

[64] T. Mathisen and J. O. Hoddevik. NRK radio on demand: Prosjektrapport.
Project report, Østfold University College, School of computer science,
June 2000.

[65] Mysql. http://www.mysql.com/ .

[66] The Apache HTTP server project. http://httpd.apache.org/ .

[67] Apache/Python integration. http://modpython.org/ .

[68] Nexsan technologies. http://www.nexsan.com/ .

[69] mmsclient. http://www.geocities.com/majormms/ .

[70] A. Rigo. Representation-based just-in-time specialization and the Psyco
prototype for Python. In Proceedings of the 2004 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pages 15–26.
ACM Press, 2004.

[71] Python Software Foundation. Python Library Reference, 2.3 edition, 2003.
Available online at http://www.python.org/doc/2.3/lib/ .

[72] itunes. http://www.apple.com/itunes/ .

[73] The Apache Software Foundation. Apache HTTP Server Version 2.0 Docu-
mentation. Available online at http://httpd.apache.org/docs-2.
0/ .

[74] Dublin Core Metadata Initiative. http://dublincore.org/ .

[75] International Organization for Standardization. ISO 8601:1988. Data ele-
ments and interchange formats — Information interchange — Representation of
dates and times. International Organization for Standardization, 1988.

[76] G. Klyne and C. Newman. Date and time on the Internet: Timestamps.
RFC 3339, July 2002.

95

[77] D. L. Mills. Network time protocol (version 3). RFC 1305, March 1992.

[78] Darwin streaming server. http://developer.apple.com/darwin/
projects/streaming/ .

[79] BBC Creative Archive pioneers new approach to public access
rights in digital age. http://www.bbc.co.uk/pressoffice/
pressreleases/stories/2004/05_may/26/creative_
archive.shtml .

[80] Sourceforge.net. http://sourceforge.net/ .

[81] Stortinget når det passer. http://stortinget.hiof.no/ .

[82] MediaWiki. http://wikipedia.sourceforge.net/ .

[83] Wikipedia, the free encyclopedia. Podcasting. http://en.wikipedia.
org/wiki/Podcasting , revised 11:55, 25 March, 2005.

[84] T. Tennøe, editor. Programvarepolitikk for fremtiden. Norwegian
Board of Technology, November 2004. Available online at http://
teknologiradet.no/html/679.htm .

[85] Software policy for the future - executive summary. http://
teknologiradet.no/html/679.htm , 2004.

[86] Wikipedia, the free encyclopedia. RSS (protocol). http://en.
wikipedia.org/wiki/RSS_(protocol) , revised 15:12, 29 March,
2005.

[87] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions in Computer Systems, 2(4), November 1984.

96

Colophon

projects | brain | Emacs | LATEX > thesis.ps

This thesis was written in Emacs and typeset with LATEXand BibTeX, installed
using Fink 0.21.2, on a PowerBook running OS X 10.3. Labour-saving scripts
were programmed in Python 2.3. Illustrations were mostly made using Omni-
Graffle. Graphs were plotted with GNUPlot.

Various other tasks were performed under Debian GNU/Linux 3.0.

The following Web resources were invaluable:

• Archive.org, for digital archaeology.

• Wikipedia, for to-the-point articles on almost anything.

• And Google, of course.

97

